Dynamic Scale Training for Object Detection
- URL: http://arxiv.org/abs/2004.12432v2
- Date: Sun, 14 Mar 2021 05:22:59 GMT
- Title: Dynamic Scale Training for Object Detection
- Authors: Yukang Chen, Peizhen Zhang, Zeming Li, Yanwei Li, Xiangyu Zhang, Lu
Qi, Jian Sun, and Jiaya Jia
- Abstract summary: We propose a Dynamic Scale Training paradigm (abbreviated as DST) to mitigate scale variation challenge in object detection.
Experimental results demonstrate the efficacy of our proposed DST towards scale variation handling.
It does not introduce inference overhead and could serve as a free lunch for general detection configurations.
- Score: 111.33112051962514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a Dynamic Scale Training paradigm (abbreviated as DST) to mitigate
scale variation challenge in object detection. Previous strategies like image
pyramid, multi-scale training, and their variants are aiming at preparing
scale-invariant data for model optimization. However, the preparation procedure
is unaware of the following optimization process that restricts their
capability in handling the scale variation. Instead, in our paradigm, we use
feedback information from the optimization process to dynamically guide the
data preparation. The proposed method is surprisingly simple yet obtains
significant gains (2%+ Average Precision on MS COCO dataset), outperforming
previous methods. Experimental results demonstrate the efficacy of our proposed
DST method towards scale variation handling. It could also generalize to
various backbones, benchmarks, and other challenging downstream tasks like
instance segmentation. It does not introduce inference overhead and could serve
as a free lunch for general detection configurations. Besides, it also
facilitates efficient training due to fast convergence. Code and models are
available at github.com/yukang2017/Stitcher.
Related papers
- A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
We introduce Adaptive Data Optimization (ADO), an algorithm that optimize data distributions in an online fashion, concurrent with model training.
ADO does not require external knowledge, proxy models, or modifications to the model update.
ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly.
arXiv Detail & Related papers (2024-10-15T17:47:44Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - FREE: Faster and Better Data-Free Meta-Learning [77.90126669914324]
Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data.
We introduce the Faster and Better Data-Free Meta-Learning framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks.
arXiv Detail & Related papers (2024-05-02T03:43:19Z) - AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods [17.043034606088234]
We introduce AdAdaGrad's scalar variant AdAdaGradNorm, which increase sizes during training.
We also perform image classification experiments, highlighting the merits of our proposed strategies.
arXiv Detail & Related papers (2024-02-17T07:49:50Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.
We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)
Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - AdamP: Slowing Down the Slowdown for Momentum Optimizers on
Scale-invariant Weights [53.8489656709356]
Normalization techniques are a boon for modern deep learning.
It is often overlooked, however, that the additional introduction of momentum results in a rapid reduction in effective step sizes for scale-invariant weights.
In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances.
arXiv Detail & Related papers (2020-06-15T08:35:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.