Beyond First-Order: Training LLMs with Stochastic Conjugate Subgradients and AdamW
- URL: http://arxiv.org/abs/2507.01241v1
- Date: Tue, 01 Jul 2025 23:30:15 GMT
- Title: Beyond First-Order: Training LLMs with Stochastic Conjugate Subgradients and AdamW
- Authors: Di Zhang, Yihang Zhang,
- Abstract summary: gradient-based descent (SGD) have long been central to training large language models (LLMs)<n>This paper proposes a conjugate subgradient method together with adaptive sampling specifically for training LLMs.
- Score: 2.028622227373579
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Stochastic gradient-based descent (SGD), have long been central to training large language models (LLMs). However, their effectiveness is increasingly being questioned, particularly in large-scale applications where empirical evidence suggests potential performance limitations. In response, this paper proposes a stochastic conjugate subgradient method together with adaptive sampling tailored specifically for training LLMs. The method not only achieves faster convergence per iteration but also demonstrates improved scalability compared to traditional SGD techniques. It leverages sample complexity analysis to adaptively choose the sample size, employs a stochastic conjugate subgradient approach to determine search directions and utilizing an AdamW-like algorithm to adaptively adjust step sizes. This approach preserves the key advantages of first-order methods while effectively addressing the nonconvexity and non-smoothness inherent in LLMs training. Additionally, we provide a detailed analysis of the advantage of the algorithm. Experimental results show that the proposed method not only maintains, but in many cases surpasses, the scalability of traditional SGD techniques, significantly enhancing both the speed and accuracy of the optimization process.
Related papers
- Revisiting the Initial Steps in Adaptive Gradient Descent Optimization [6.468625143772815]
Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural networks across diverse machine learning tasks.<n>These methods often suffer from suboptimal generalization compared to descent gradient (SGD) and exhibit instability.<n>We introduce simple yet effective solutions: initializing the second-order moment estimation with non-zero values.
arXiv Detail & Related papers (2024-12-03T04:28:14Z) - The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
This paper proposes an innovative method specifically designed for kernel support vector machines (SVMs)
It not only achieves faster iteration per iteration but also exhibits enhanced convergence when compared to conventional SFO techniques.
Our experimental results demonstrate that the proposed algorithm not only maintains but potentially exceeds the scalability of SFO methods.
arXiv Detail & Related papers (2024-07-30T17:03:19Z) - Learning rate adaptive stochastic gradient descent optimization methods: numerical simulations for deep learning methods for partial differential equations and convergence analyses [5.052293146674794]
It is known that the standard descent (SGD) optimization method, as well as accelerated and adaptive SGD optimization methods such as the Adam fail to converge if the learning rates do not converge to zero.
In this work we propose and study a learning-rate-adaptive approach for SGD optimization methods in which the learning rate is adjusted based on empirical estimates.
arXiv Detail & Related papers (2024-06-20T14:07:39Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Adaptive pruning-based Newton's method for distributed learning [14.885388389215587]
This paper presents a novel and efficient algorithm named Distributed Adaptive Newton Learning (textttDANL)<n>textttDANL attains a linear convergence rate while efficiently adapting to available resources and keeping high efficiency.<n>Experiments demonstrate that textttDANL achieves linear convergence with efficient communication and strong performance across different datasets.
arXiv Detail & Related papers (2023-08-20T04:01:30Z) - Stochastic Average Gradient : A Simple Empirical Investigation [0.0]
Average gradient (SAG) is a method for optimizing the sum of a finite number of smooth functions.
SAG converges faster than other iterations on simple toy problems and performs better than many other iterations on simple machine learning problems.
We also propose a combination of SAG with the momentum algorithm and Adam.
arXiv Detail & Related papers (2023-07-27T17:34:26Z) - Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for
Deep Learning [8.173034693197351]
We propose a new per-layer adaptive step-size procedure for first-order optimization methods in deep learning.
The proposed approach exploits the layer-wise curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer.
Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules.
arXiv Detail & Related papers (2023-05-23T04:12:55Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
We propose a new method for approximating Linearized Laplace Approximation (LLA) using a variational sparse Gaussian Process (GP)
Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN.
It allows for efficient optimization, which results in sub-linear training time in the size of the training dataset.
arXiv Detail & Related papers (2023-02-24T10:32:30Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - Adaptive Learning of the Optimal Batch Size of SGD [52.50880550357175]
We propose a method capable of learning the optimal batch size adaptively throughout its iterations for strongly convex and smooth functions.
Our method does this provably, and in our experiments with synthetic and real data robustly exhibits nearly optimal behaviour.
We generalize our method to several new batch strategies not considered in the literature before, including a sampling suitable for distributed implementations.
arXiv Detail & Related papers (2020-05-03T14:28:32Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
We propose a Dynamic Scale Training paradigm (abbreviated as DST) to mitigate scale variation challenge in object detection.
Experimental results demonstrate the efficacy of our proposed DST towards scale variation handling.
It does not introduce inference overhead and could serve as a free lunch for general detection configurations.
arXiv Detail & Related papers (2020-04-26T16:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.