論文の概要: On the Importance of Word and Sentence Representation Learning in
Implicit Discourse Relation Classification
- arxiv url: http://arxiv.org/abs/2004.12617v2
- Date: Tue, 28 Apr 2020 15:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:11:33.295036
- Title: On the Importance of Word and Sentence Representation Learning in
Implicit Discourse Relation Classification
- Title(参考訳): 暗黙的談話関係分類における単語・文表現学習の重要性について
- Authors: Xin Liu, Jiefu Ou, Yangqiu Song, Xin Jiang
- Abstract要約: 暗黙の談話関係分類は、浅い談話解析において最も難しい部分の1つである。
暗黙的な談話分析には,強力な文脈表現モジュール,二元多視点マッチングモジュール,大域情報融合モジュールが重要であると論じる。
- 参考スコア(独自算出の注目度): 43.483855615908695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit discourse relation classification is one of the most difficult parts
in shallow discourse parsing as the relation prediction without explicit
connectives requires the language understanding at both the text span level and
the sentence level. Previous studies mainly focus on the interactions between
two arguments. We argue that a powerful contextualized representation module, a
bilateral multi-perspective matching module, and a global information fusion
module are all important to implicit discourse analysis. We propose a novel
model to combine these modules together. Extensive experiments show that our
proposed model outperforms BERT and other state-of-the-art systems on the PDTB
dataset by around 8% and CoNLL 2016 datasets around 16%. We also analyze the
effectiveness of different modules in the implicit discourse relation
classification task and demonstrate how different levels of representation
learning can affect the results.
- Abstract(参考訳): 暗黙の談話関係分類は、暗黙の談話解析における最も難しい部分の1つであり、明示的な接続のない関係予測は、テキストスパンレベルと文レベルの両方で言語理解を必要とする。
先行研究は主に2つの議論の相互作用に焦点を合わせている。
我々は、強力な文脈化表現モジュール、双方向のマルチパースペクティブマッチングモジュール、グローバル情報融合モジュールは全て、暗黙の談話分析において重要であると主張する。
これらのモジュールを結合する新しいモデルを提案する。
実験の結果,提案モデルでは,PDTBデータセット上のBERTやその他の最先端システムよりも約8%,CoNLL 2016データセットは約16%優れていた。
また,暗黙的談話関係分類タスクにおける異なるモジュールの有効性を分析し,表現学習の異なるレベルが結果にどのように影響するかを示す。
関連論文リスト
- Learning Disentangled Speech Representations [0.412484724941528]
SynSpeechは、非絡み合った音声表現の研究を可能にするために設計された、新しい大規模合成音声データセットである。
本稿では, 線形探索と教師付きアンタングル化指標を併用して, アンタングル化表現学習手法を評価する枠組みを提案する。
SynSpeechは、さまざまな要因のベンチマークを促進し、ジェンダーや話し方のようなより単純な機能の切り離しを期待できると同時に、話者アイデンティティのような複雑な属性を分離する際の課題を強調します。
論文 参考訳(メタデータ) (2023-11-04T04:54:17Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
本稿では,コンテキスト情報を完全に活用する効率的なコンテキスト認識モデル(ECASE)を提案する。
文脈情報や議論情報を集約するために,シーケンスアテンションモジュールと距離重み付き類似度損失を導入する。
各種ドメインの5つのデータセットに対する実験により,我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-10-08T08:47:10Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - Improve Discourse Dependency Parsing with Contextualized Representations [28.916249926065273]
本稿では,異なるレベルの単位の文脈化表現を符号化するトランスフォーマーの活用を提案する。
記事間で共通に共有される記述パターンの観察に動機付けられ,談話関係の識別をシーケンスラベリングタスクとして扱う新しい手法を提案する。
論文 参考訳(メタデータ) (2022-05-04T14:35:38Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。