Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting
- URL: http://arxiv.org/abs/2004.12651v1
- Date: Mon, 27 Apr 2020 08:59:57 GMT
- Title: Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting
- Authors: Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, Xiangzhan
Yu
- Abstract summary: We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
- Score: 66.45372974713189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep pretrained language models have achieved great success in the way of
pretraining first and then fine-tuning. But such a sequential transfer learning
paradigm often confronts the catastrophic forgetting problem and leads to
sub-optimal performance. To fine-tune with less forgetting, we propose a recall
and learn mechanism, which adopts the idea of multi-task learning and jointly
learns pretraining tasks and downstream tasks. Specifically, we propose a
Pretraining Simulation mechanism to recall the knowledge from pretraining tasks
without data, and an Objective Shifting mechanism to focus the learning on
downstream tasks gradually. Experiments show that our method achieves
state-of-the-art performance on the GLUE benchmark. Our method also enables
BERT-base to achieve better performance than directly fine-tuning of
BERT-large. Further, we provide the open-source RecAdam optimizer, which
integrates the proposed mechanisms into Adam optimizer, to facility the NLP
community.
Related papers
- Task-Oriented Pre-Training for Drivable Area Detection [5.57325257338134]
We propose a task-oriented pre-training method that begins with generating redundant segmentation proposals.
We then introduce a Specific Category Enhancement Fine-tuning (SCEF) strategy for fine-tuning the Contrastive Language-Image Pre-training (CLIP) model.
This approach can generate a lot of coarse training data for pre-training models, which are further fine-tuned using manually annotated data.
arXiv Detail & Related papers (2024-09-30T10:25:47Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Instruction Pre-Training: Language Models are Supervised Multitask Learners [115.95022434390181]
In this paper, we propose a framework that augments massive raw corpora with instruction-response pairs to pre-train language models (LMs)
In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training.
arXiv Detail & Related papers (2024-06-20T16:55:33Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
Fine-tuning a pre-trained model often suffers from catastrophic forgetting.
Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly.
We propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model.
arXiv Detail & Related papers (2023-06-26T17:53:05Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
We propose an incremental learning method for end-to-end Automatic Speech Recognition (ASR)
We design a novel explainability-based knowledge distillation for ASR models, which is combined with a response-based knowledge distillation to maintain the original model's predictions and the "reason" for the predictions.
Results on a multi-stage sequential training task show that our method outperforms existing ones in mitigating forgetting.
arXiv Detail & Related papers (2020-05-11T08:18:08Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.