Instruction Pre-Training: Language Models are Supervised Multitask Learners
- URL: http://arxiv.org/abs/2406.14491v1
- Date: Thu, 20 Jun 2024 16:55:33 GMT
- Title: Instruction Pre-Training: Language Models are Supervised Multitask Learners
- Authors: Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, Furu Wei,
- Abstract summary: In this paper, we propose a framework that augments massive raw corpora with instruction-response pairs to pre-train language models (LMs)
In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training.
- Score: 115.95022434390181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised multitask pre-training has been the critical method behind the recent success of language models (LMs). However, supervised multitask learning still holds significant promise, as scaling it in the post-training stage trends towards better generalization. In this paper, we explore supervised multitask pre-training by proposing Instruction Pre-Training, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train LMs. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training. In pre-training from scratch, Instruction Pre-Training not only consistently enhances pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, Instruction Pre-Training enables Llama3-8B to be comparable to or even outperform Llama3-70B. Our model, code, and data are available at https://github.com/microsoft/LMOps.
Related papers
- Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs [4.096028601599825]
Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data.
This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning.
arXiv Detail & Related papers (2024-10-14T17:20:30Z) - Multi-Stage Multi-Modal Pre-Training for Automatic Speech Recognition [10.36399200974439]
We introduce a novel method combining multi-modal and multi-task unsupervised pre-training with a translation-based supervised mid-training approach.
We empirically demonstrate that such a multi-stage approach leads to relative word error rate (WER) improvements of up to 38.45% over baselines on both Librispeech and SUPERB.
arXiv Detail & Related papers (2024-03-28T20:23:39Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
We study the design options for VLM pre-training through step-by-step controllable comparisons.
We build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-12-12T18:58:18Z) - SPRINT: Scalable Policy Pre-Training via Language Instruction Relabeling [28.380226726781082]
We propose SPRINT, a scalable offline policy pre-training approach.
Our method uses two core ideas to automatically expand a base set of pre-training tasks.
Experimental results in a household simulator and on a real robot kitchen manipulation task show that SPRINT leads to substantially faster learning of new long-horizon tasks.
arXiv Detail & Related papers (2023-06-20T20:59:10Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
We introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos.
Our framework significantly improves both final performances and sample-efficiency of vision-based reinforcement learning.
arXiv Detail & Related papers (2022-03-25T19:44:09Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
arXiv Detail & Related papers (2020-04-27T08:59:57Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.