論文の概要: Self-supervised Keypoint Correspondences for Multi-Person Pose
Estimation and Tracking in Videos
- arxiv url: http://arxiv.org/abs/2004.12652v3
- Date: Mon, 15 Mar 2021 11:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:29:51.407354
- Title: Self-supervised Keypoint Correspondences for Multi-Person Pose
Estimation and Tracking in Videos
- Title(参考訳): ビデオにおける多人数ポーズ推定と追跡のための自己教師付きキーポイント対応
- Authors: Umer Rafi, Andreas Doering, Bastian Leibe, Juergen Gall
- Abstract要約: 本稿では,映像中の人物を関連付けるために,キーポイント対応に依存するアプローチを提案する。
ビデオデータ上でキーポイント対応を推定するためにネットワークをトレーニングする代わりに、人間のポーズ推定のために大規模な画像データセットでトレーニングする。
提案手法は,PosTrack$2017およびPoseTrack$2018のデータセット上で,複数フレームのポーズ推定と複数人物のポーズ追跡の最先端結果を実現する。
- 参考スコア(独自算出の注目度): 32.43899916477434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video annotation is expensive and time consuming. Consequently, datasets for
multi-person pose estimation and tracking are less diverse and have more sparse
annotations compared to large scale image datasets for human pose estimation.
This makes it challenging to learn deep learning based models for associating
keypoints across frames that are robust to nuisance factors such as motion blur
and occlusions for the task of multi-person pose tracking. To address this
issue, we propose an approach that relies on keypoint correspondences for
associating persons in videos. Instead of training the network for estimating
keypoint correspondences on video data, it is trained on a large scale image
datasets for human pose estimation using self-supervision. Combined with a
top-down framework for human pose estimation, we use keypoints correspondences
to (i) recover missed pose detections (ii) associate pose detections across
video frames. Our approach achieves state-of-the-art results for multi-frame
pose estimation and multi-person pose tracking on the PosTrack $2017$ and
PoseTrack $2018$ data sets.
- Abstract(参考訳): ビデオアノテーションは高価で時間がかかります。
その結果、多人数のポーズ推定と追跡のためのデータセットは多様性が低く、人間のポーズ推定のための大規模な画像データセットと比較して、より疎いアノテーションがある。
これにより、複数の人物のポーズトラッキングのタスクにおいて、動きのぼやけや閉塞といったニュアンス要因に頑健なフレーム間でキーポイントを関連付けるためのディープラーニングベースのモデルを学ぶことが困難になる。
この問題に対処するために,ビデオ中の人物を関連付けるためのキーポイント対応方式を提案する。
映像データ上でキーポイント対応を推定するためにネットワークをトレーニングする代わりに、自己監督を用いて人間のポーズ推定のための大規模な画像データセットで訓練する。
人間のポーズ推定のためのトップダウンフレームワークと組み合わせることで,キーポイント対応を用いる。
(i)見逃したポーズ検出を回収する
(ii)ビデオフレーム間のポーズ検出を関連づける。
提案手法は,postrack $2017$ と posetrack 2018$ のデータセット上で,マルチフレームポーズ推定とマルチパーソンポーズトラッキングのための最先端の結果を得る。
関連論文リスト
- SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPoseは、カメラ・トゥ・ワールドおよびオブジェクト・トゥ・カメラシナリオにおける2ビュー相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
精度と速度の点で最先端の手法と比較して、競争力や優れた性能を達成する。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
論文 参考訳(メタデータ) (2024-07-11T05:46:35Z) - Reconstructing Close Human Interactions from Multiple Views [38.924950289788804]
本稿では,複数のキャリブレーションカメラで捉えた密接なインタラクションを行う複数の個人のポーズを再構築する上での課題について述べる。
これらの課題に対処する新しいシステムを導入する。
本システムは,学習に基づくポーズ推定コンポーネントと,それに対応するトレーニングと推論戦略を統合する。
論文 参考訳(メタデータ) (2024-01-29T14:08:02Z) - Pose for Everything: Towards Category-Agnostic Pose Estimation [93.07415325374761]
Category-Agnostic Pose Estimation (CAPE) は、キーポイント定義を持つ少数のサンプルのみを与えられた任意の種類のオブジェクトのポーズを検出することができるポーズ推定モデルを作成することを目的としている。
異なるキーポイント間のインタラクションと、サポートとクエリイメージの関係をキャプチャするために、トランスフォーマーベースのキーポイントインタラクションモジュール(KIM)を提案する。
また、20K以上のインスタンスを含む100のオブジェクトカテゴリの2次元ポーズデータセットであるMP-100データセットを導入し、CAPEアルゴリズムの開発に適している。
論文 参考訳(メタデータ) (2022-07-21T09:40:54Z) - Learning Dynamics via Graph Neural Networks for Human Pose Estimation
and Tracking [98.91894395941766]
ポーズ検出とは無関係なポーズダイナミクスを学習する新しいオンライン手法を提案する。
具体的には、空間的・時間的情報と視覚的情報の両方を明示的に考慮したグラフニューラルネットワーク(GNN)を通して、このダイナミクスの予測を導出する。
PoseTrack 2017とPoseTrack 2018データセットの実験では、提案手法が人間のポーズ推定とトラッキングタスクの両方において、技術の現状よりも優れた結果が得られることを示した。
論文 参考訳(メタデータ) (2021-06-07T16:36:50Z) - Deep Dual Consecutive Network for Human Pose Estimation [44.41818683253614]
キーポイント検出を容易にするために,ビデオフレーム間の時間的キューを豊富に活用した,新しいマルチフレーム人間ポーズ推定フレームワークを提案する。
本手法は、PoseTrack 2017およびPoseTrack 2018の大規模ベンチマークデータセットにおけるマルチフレームパーソンポースチャレンジチャレンジで1位にランクインします。
論文 参考訳(メタデータ) (2021-03-12T13:11:27Z) - PoseTrackReID: Dataset Description [97.7241689753353]
詩情報は、背景や閉塞音から有用な特徴情報を遠ざけるのに役立つ。
PoseTrackReIDでは、人物のリIDと複数人のポーズトラッキングのギャップを埋めたいと考えています。
このデータセットは、マルチフレームの人物のre-IDに関する現在の最先端メソッドに対する優れたベンチマークを提供する。
論文 参考訳(メタデータ) (2020-11-12T07:44:25Z) - Towards Accurate Human Pose Estimation in Videos of Crowded Scenes [134.60638597115872]
我々は、時間的文脈を利用して新しいデータを収集する視点から、混雑したシーンのビデオにおける人間のポーズ推定を改善することに注力する。
あるフレームについては、過去のフレームから過去のポーズを転送し、その後のフレームから現在のフレームへ未来的なポーズを後退させ、ビデオにおける安定した人間のポーズ推定に繋がる。
このようにして、HIEチャレンジのテストデータセット上で、13本中7本、56.33本の平均w_APで最高の性能を達成する。
論文 参考訳(メタデータ) (2020-10-16T13:19:11Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Deep Reinforcement Learning for Active Human Pose Estimation [35.229529080763925]
完全トレーニング可能な深層強化学習型アクティブポーズ推定アーキテクチャであるPose-DRLを紹介する。
提案モデルでは,強い多視点ベースラインと比較して,より正確なポーズ推定を行う視点を選択することを学習している。
論文 参考訳(メタデータ) (2020-01-07T13:35:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。