論文の概要: SRPose: Two-view Relative Pose Estimation with Sparse Keypoints
- arxiv url: http://arxiv.org/abs/2407.08199v2
- Date: Thu, 18 Jul 2024 05:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:02:37.926317
- Title: SRPose: Two-view Relative Pose Estimation with Sparse Keypoints
- Title(参考訳): SRPose: スパースキーポイントを用いた2視点相対ポース推定
- Authors: Rui Yin, Yulun Zhang, Zherong Pan, Jianjun Zhu, Cheng Wang, Biao Jia,
- Abstract要約: SRPoseは、カメラ・トゥ・ワールドおよびオブジェクト・トゥ・カメラシナリオにおける2ビュー相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
精度と速度の点で最先端の手法と比較して、競争力や優れた性能を達成する。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
- 参考スコア(独自算出の注目度): 51.49105161103385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-view pose estimation is essential for map-free visual relocalization and object pose tracking tasks. However, traditional matching methods suffer from time-consuming robust estimators, while deep learning-based pose regressors only cater to camera-to-world pose estimation, lacking generalizability to different image sizes and camera intrinsics. In this paper, we propose SRPose, a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios. SRPose consists of a sparse keypoint detector, an intrinsic-calibration position encoder, and promptable prior knowledge-guided attention layers. Given two RGB images of a fixed scene or a moving object, SRPose estimates the relative camera or 6D object pose transformation. Extensive experiments demonstrate that SRPose achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed, showing generalizability to both scenarios. It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
- Abstract(参考訳): 2ビューポーズ推定は、地図のない視覚的再ローカライズとオブジェクトポーズ追跡タスクに不可欠である。
しかし、従来のマッチング手法は、時間を要する堅牢な推定器に悩まされ、ディープラーニングベースのポーズ回帰器は、カメラ間ポーズ推定にのみ対応し、画像サイズやカメラ固有の一般化性に欠ける。
本稿では,SRPoseを提案する。SRPoseは,カメラ・ツー・ワールドシナリオとオブジェクト・ツー・カメラシナリオにおける2視点相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
SRPoseはスパースキーポイント検出器、固有校正位置エンコーダ、知識誘導型アテンション層で構成されている。
固定シーンまたは移動物体の2つのRGB画像が与えられた場合、SRPoseは相対カメラまたは6Dオブジェクトのポーズ変換を推定する。
大規模な実験により、SRPoseは最先端の手法と比較して、精度と速度の面で競争力や優れた性能を達成し、両方のシナリオに一般化可能であることが示された。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
関連論文リスト
- ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation [17.097170273209333]
画像からカメラのポーズを復元することは、3Dコンピュータビジョンの基本課題である。
最近のデータ駆動型アプローチは、6DoFカメラのポーズを後退させたり、回転を確率分布として定式化したりすることで、カメラのポーズを直接出力することを目指している。
本稿では, ジェネレータと識別器を用いて2つのフレームワークを統合することを提案する。
論文 参考訳(メタデータ) (2024-08-16T22:45:46Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
コンピュータビジョンにおける6次元カメラのポーズ推定問題に対処するため,iComMaという手法を提案する。
3次元ガウススプラッティング(3DGS)の反転による高精度カメラポーズ推定法を提案する。
論文 参考訳(メタデータ) (2023-12-14T15:31:33Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
本研究では、6次元のポーズとサイズ推定を分離し、不完全なスケールが剛性変換に与える影響を緩和するパイプラインを提案する。
具体的には,事前学習した単分子推定器を用いて局所的な幾何学的情報を抽出する。
別個のブランチは、カテゴリレベルの統計に基づいてオブジェクトのメートル法スケールを直接復元するように設計されている。
論文 参考訳(メタデータ) (2023-09-19T02:20:26Z) - RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
スパースビュー画像集合(2-8画像)から6次元カメラポーズを推定する作業に対処する。
我々は,画像対上の相対回転よりも分布を推定するネットワークを学習するRelPoseフレームワークを構築した。
最終システムは,先行技術よりも6次元ポーズ予測を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-08T17:59:58Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
本稿では,PoseMatcherを提案する。
3ビューシステムに基づくオブジェクトと画像のマッチングのための新しいトレーニングパイプラインを作成します。
PoseMatcherは、画像とポイントクラウドの異なる入力モダリティに対応できるように、IO-Layerを導入します。
論文 参考訳(メタデータ) (2023-04-03T21:14:59Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
本稿では、任意のオブジェクトの複数の画像からカメラ視点を推定するデータ駆動手法について述べる。
本手法は, 画像の鮮明さから, 最先端のSfM法とSLAM法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-11T17:59:59Z) - ImPosIng: Implicit Pose Encoding for Efficient Camera Pose Estimation [2.6808541153140077]
暗黙の詩。
(ImPosing)はイメージとカメラのポーズを2つの別々のニューラルネットワークで共通の潜在表現に埋め込む。
階層的な方法で潜在空間を通して候補を評価することにより、カメラの位置と向きを直接回帰するのではなく、洗練する。
論文 参考訳(メタデータ) (2022-05-05T13:33:25Z) - DSC-PoseNet: Learning 6DoF Object Pose Estimation via Dual-scale
Consistency [43.09728251735362]
2Dオブジェクト境界ボックスから6DoFオブジェクトポーズを得るための2ステップポーズ推定フレームワークを提案する。
最初のステップでは、フレームワークはオブジェクトを実際のデータと合成データからセグメンテーションすることを学ぶ。
第2のステップでは,dsc-posenetという,デュアルスケールなポーズ推定ネットワークを設計する。
提案手法は,合成データに基づいて訓練した最先端のモデルよりも大きなマージンで優れる。
論文 参考訳(メタデータ) (2021-04-08T10:19:35Z) - Visual Camera Re-Localization Using Graph Neural Networks and Relative
Pose Supervision [31.947525258453584]
視覚再局在化とは、単一の画像を入力として、予め記録された環境に対してカメラの位置と向きを推定する手段である。
提案手法は特別な仮定をほとんど行わず,訓練やテストでは極めて軽量である。
標準の屋内(7-Scenes)と屋外(Cambridge Landmarks)のカメラ再ローカリゼーションベンチマークに対するアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2021-04-06T14:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。