EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data
Association
- URL: http://arxiv.org/abs/2004.12730v2
- Date: Wed, 29 Jul 2020 07:36:13 GMT
- Title: EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data
Association
- Authors: Yanmin Wu, Yunzhou Zhang, Delong Zhu, Yonghui Feng, Sonya Coleman and
Dermot Kerr
- Abstract summary: We propose an ensemble data associate strategy for integrating the parametric and nonparametric statistic tests.
We then present an accurate object pose estimation framework, in which an outliers-robust centroid and scale estimation algorithm is developed.
We build a SLAM system that can generate semi-dense or lightweight object-oriented maps with a monocular camera.
- Score: 13.066862774833867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-level data association and pose estimation play a fundamental role in
semantic SLAM, which remain unsolved due to the lack of robust and accurate
algorithms. In this work, we propose an ensemble data associate strategy for
integrating the parametric and nonparametric statistic tests. By exploiting the
nature of different statistics, our method can effectively aggregate the
information of different measurements, and thus significantly improve the
robustness and accuracy of data association. We then present an accurate object
pose estimation framework, in which an outliers-robust centroid and scale
estimation algorithm and an object pose initialization algorithm are developed
to help improve the optimality of pose estimation results. Furthermore, we
build a SLAM system that can generate semi-dense or lightweight object-oriented
maps with a monocular camera. Extensive experiments are conducted on three
publicly available datasets and a real scenario. The results show that our
approach significantly outperforms state-of-the-art techniques in accuracy and
robustness. The source code is available on:
https://github.com/yanmin-wu/EAO-SLAM.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
We shed new light on the traditional nearest neighbors algorithm from the perspective of information theory.
We propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model.
Our work showcases the architecture's versatility by achieving state-of-the-art results in classification and anomaly detection.
arXiv Detail & Related papers (2023-11-17T00:35:38Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - An Instance Selection Algorithm for Big Data in High imbalanced datasets
based on LSH [0.0]
Training Machine Learning models in real contexts often deals with big data sets and imbalance samples where the class of interest is unrepresented.
This work proposes three new methods for instance selection (IS) to be able to deal with large and imbalanced data sets.
Algorithms were developed in the Apache Spark framework, guaranteeing their scalability.
arXiv Detail & Related papers (2022-10-09T17:38:41Z) - Another Use of SMOTE for Interpretable Data Collaboration Analysis [8.143750358586072]
Data collaboration (DC) analysis has been developed for privacy-preserving integrated analysis across multiple institutions.
This study proposes an anchor data construction technique to improve the recognition performance without increasing the risk of data leakage.
arXiv Detail & Related papers (2022-08-26T06:39:13Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - SemCal: Semantic LiDAR-Camera Calibration using Neural MutualInformation
Estimator [7.478076599395811]
SemCal is an automatic, targetless, extrinsic calibration algorithm for a LiDAR and camera system using semantic information.
We leverage a neural information estimator to estimate the mutual information (MI) of semantic information extracted from each sensor measurement.
arXiv Detail & Related papers (2021-09-21T15:51:24Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.