論文の概要: An Epistemic Approach to the Formal Specification of Statistical Machine
Learning
- arxiv url: http://arxiv.org/abs/2004.12734v3
- Date: Sun, 20 Sep 2020 17:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:11:46.131967
- Title: An Epistemic Approach to the Formal Specification of Statistical Machine
Learning
- Title(参考訳): 統計的機械学習の形式的仕様に対する認識論的アプローチ
- Authors: Yusuke Kawamoto
- Abstract要約: Kripkeモデルに基づく教師あり学習のための形式モデルを提案する。
次に、統計分類器の分類性能、頑健性、公正性の様々な概念を定式化する。
- 参考スコア(独自算出の注目度): 1.599072005190786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an epistemic approach to formalizing statistical properties of
machine learning. Specifically, we introduce a formal model for supervised
learning based on a Kripke model where each possible world corresponds to a
possible dataset and modal operators are interpreted as transformation and
testing on datasets. Then we formalize various notions of the classification
performance, robustness, and fairness of statistical classifiers by using our
extension of statistical epistemic logic (StatEL). In this formalization, we
show relationships among properties of classifiers, and relevance between
classification performance and robustness. As far as we know, this is the first
work that uses epistemic models and logical formulas to express statistical
properties of machine learning, and would be a starting point to develop
theories of formal specification of machine learning.
- Abstract(参考訳): 機械学習の統計的特性を定式化するための認識論的アプローチを提案する。
具体的には、可能な各世界が可能なデータセットに対応し、モーダル演算子をデータセット上での変換とテストとして解釈するKripkeモデルに基づく教師あり学習の形式モデルを提案する。
次に,統計的認識論理の拡張(StatEL)を用いて,統計分類器の分類性能,頑健性,公平性の諸概念を定式化する。
この形式化において,分類器の特性と分類性能とロバスト性との関係を示す。
私たちが知る限り、これは認識論的モデルと論理式を使って機械学習の統計的特性を表現する最初の仕事であり、機械学習の形式的仕様の理論を開発する出発点となるでしょう。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - A process algebraic framework for multi-agent dynamic epistemic systems [55.2480439325792]
本稿では,マルチエージェント,知識ベース,動的システムのモデリングと解析のための統合フレームワークを提案する。
モデリング側では,このようなフレームワークを実用的な目的に使いやすくするプロセス代数的,エージェント指向の仕様言語を提案する。
論文 参考訳(メタデータ) (2024-07-24T08:35:50Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
我々は全文を実証研究する。
ZhengらによるFPTC(Time Complexity)アプローチ。
本稿では,ロジスティック回帰とランダムフォレスト分類のための定式化について検討する。
本研究では,本研究から,学習時間の予測が文脈とどのように密接に関連しているかを観察する。
論文 参考訳(メタデータ) (2023-09-20T11:35:03Z) - Simulation-Based Prior Knowledge Elicitation for Parametric Bayesian Models [2.9172603864294024]
我々は、ドメインエキスパートの知識をモデルパラメータ上の対応する事前分布に変換することに注力する。
既存の適用方法における大きな課題は、モデル構造に関係なく、専門家の期待に沿う事前分布を定式化するために、これらの異なるフォーマットを効果的に活用する方法である。
本研究は,本手法が基礎となるモデル構造に大きく依存し,量子化法,モーメント法,ヒストグラム法など,様々な手法に適応可能であるという主張を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-22T10:43:05Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
我々は、トポロジと表現の幾何学を強調する統計のクラスを提示する。
モデル選択に使用する場合の感度と特異性の観点から,これらの統計値を評価する。
これらの新しい手法により、脳やコンピューター科学者は、脳やモデルによって学習された動的表現変換を可視化することができる。
論文 参考訳(メタデータ) (2022-03-10T17:14:14Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
依存関係解析のための解釈可能な推論プロセスを持つニューラルモデルを開発する。
私たちのモデルはインスタンスベースの推論を採用しており、トレーニングセットのエッジと比較することで、依存関係のエッジを抽出し、ラベル付けします。
論文 参考訳(メタデータ) (2021-09-28T05:30:52Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - A hybrid model-based and learning-based approach for classification
using limited number of training samples [13.60714541247498]
本稿では,物理に基づく統計モデルと学習に基づく分類器の両方を利用するハイブリッド分類手法であるHyPhyLearnを提案する。
提案手法は、HyPhyLearnが学習ベースおよび統計モデルに基づく分類器の個人的アプローチに関連する課題を軽減するという予想に基づいている。
論文 参考訳(メタデータ) (2021-06-25T05:19:50Z) - Instance-Based Learning of Span Representations: A Case Study through
Named Entity Recognition [48.06319154279427]
本研究では,スパン間の類似性を学習するインスタンスベースの学習手法を提案する。
本手法では,性能を犠牲にすることなく高い解釈性を持つモデルを構築することができる。
論文 参考訳(メタデータ) (2020-04-29T23:32:42Z) - Structural Regularization [0.0]
本稿では,統計モデルの正則化として経済理論に基づく構造モデルを用いて,データモデリングの新しい手法を提案する。
本手法は, 構造モデルと非構造正規化統計モデルの両方より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-27T06:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。