論文の概要: Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development
- arxiv url: http://arxiv.org/abs/2309.11226v1
- Date: Wed, 20 Sep 2023 11:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 16:33:40.992678
- Title: Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development
- Title(参考訳): 継続的学習システム開発を支援する機械学習学習時間の予測に向けて
- Authors: Francesca Marzi, Giordano d'Aloisio, Antinisca Di Marco, and Giovanni
Stilo
- Abstract要約: 我々は全文を実証研究する。
ZhengらによるFPTC(Time Complexity)アプローチ。
本稿では,ロジスティック回帰とランダムフォレスト分類のための定式化について検討する。
本研究では,本研究から,学習時間の予測が文脈とどのように密接に関連しているかを観察する。
- 参考スコア(独自算出の注目度): 5.207307163958806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of predicting the training time of machine learning (ML) models
has become extremely relevant in the scientific community. Being able to
predict a priori the training time of an ML model would enable the automatic
selection of the best model both in terms of energy efficiency and in terms of
performance in the context of, for instance, MLOps architectures. In this
paper, we present the work we are conducting towards this direction. In
particular, we present an extensive empirical study of the Full Parameter Time
Complexity (FPTC) approach by Zheng et al., which is, to the best of our
knowledge, the only approach formalizing the training time of ML models as a
function of both dataset's and model's parameters. We study the formulations
proposed for the Logistic Regression and Random Forest classifiers, and we
highlight the main strengths and weaknesses of the approach. Finally, we
observe how, from the conducted study, the prediction of training time is
strictly related to the context (i.e., the involved dataset) and how the FPTC
approach is not generalizable.
- Abstract(参考訳): 機械学習モデル(ML)モデルのトレーニング時間を予測する問題は、科学コミュニティにおいて極めて重要になっている。
mlモデルのトレーニング時間を事前に予測できることは、エネルギー効率と、例えばmlopsアーキテクチャの文脈におけるパフォーマンスの両方において、最良のモデルを自動的に選択することを可能にする。
本稿では,本研究の方向性について述べる。
特に、ZhengらによるFPTC(Full Parameter Time Complexity)アプローチについて広範な実証的研究を行い、機械学習モデルのトレーニング時間をデータセットとモデルの両方のパラメータの関数として形式化する唯一のアプローチについて述べる。
我々は,ロジスティック回帰とランダムフォレスト分類のための定式化について検討し,アプローチの主な長所と短所を強調した。
最後に、本研究から、トレーニング時間の予測が文脈(例えば、関連するデータセット)とどのように関係しているか、そしてFPTCアプローチが一般化できないのかを観察する。
関連論文リスト
- TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
本稿では,LVLM(Large Vision Language Models)のマルチモーダル事前学習品質を示すために,MIR(Modality Integration Rate)を提案する。
MIRは、トレーニングデータ選択、トレーニング戦略スケジュール、モデルアーキテクチャ設計に重点を置いて、トレーニング前の結果を改善する。
論文 参考訳(メタデータ) (2024-10-09T17:59:04Z) - Machine Unlearning of Pre-trained Large Language Models [17.40601262379265]
本研究では,大規模言語モデル(LLM)の文脈における「忘れられる権利」の概念について検討する。
我々は、事前学習されたモデルに焦点をあてて、機械学習を重要なソリューションとして探求する。
論文 参考訳(メタデータ) (2024-02-23T07:43:26Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAFは、バックキャストに基づく予測に先立って自己適応段階を統合する」
提案手法は,符号化された表現を進化する分布に効率よく適応させることにより,より優れた一般化を実現する。
時系列データが医療や金融などの非定常性で知られる領域における合成および実世界のデータセットについて、SAFの顕著なメリットを実証する。
論文 参考訳(メタデータ) (2022-02-04T21:54:10Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
実データ比率を自動的にスケジュールするAutoMBPOというフレームワークを提案する。
本稿ではまず,政策訓練における実データの役割を理論的に分析し,実際のデータの比率を徐々に高めれば,より優れた性能が得られることを示唆する。
論文 参考訳(メタデータ) (2021-11-16T15:24:59Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。