論文の概要: Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS)
- arxiv url: http://arxiv.org/abs/2004.12850v3
- Date: Tue, 11 Aug 2020 20:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 04:26:59.591407
- Title: Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS)
- Title(参考訳): 立方体空間前置によるニューラルシンボリック記述計画モデルの学習--ボイジャーホーム(ストリップ)
- Authors: Masataro Asai and Christian Muise
- Abstract要約: 我々のニューロシンボリックアーキテクチャは、画像のみから簡潔で効果的な離散状態遷移モデルを生成するために、エンドツーエンドで訓練されていることを示す。
私たちのターゲット表現は、既成の問題解決者が使いこなせる形で既に存在しており、現代の検索機能への扉を開いています。
- 参考スコア(独自算出の注目度): 13.141761152863868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We achieved a new milestone in the difficult task of enabling agents to learn
about their environment autonomously. Our neuro-symbolic architecture is
trained end-to-end to produce a succinct and effective discrete state
transition model from images alone. Our target representation (the Planning
Domain Definition Language) is already in a form that off-the-shelf solvers can
consume, and opens the door to the rich array of modern heuristic search
capabilities. We demonstrate how the sophisticated innate prior we place on the
learning process significantly reduces the complexity of the learned
representation, and reveals a connection to the graph-theoretic notion of
"cube-like graphs", thus opening the door to a deeper understanding of the
ideal properties for learned symbolic representations. We show that the
powerful domain-independent heuristics allow our system to solve visual
15-Puzzle instances which are beyond the reach of blind search, without
resorting to the Reinforcement Learning approach that requires a huge amount of
training on the domain-dependent reward information.
- Abstract(参考訳): エージェントが自律的に環境について学習できるようにするという困難なタスクにおいて、新たなマイルストーンを達成しました。
私たちのニューロシンボリックアーキテクチャは、画像のみから簡潔で効果的な離散状態遷移モデルを作成するためにエンドツーエンドで訓練されています。
当社のターゲット表現(計画ドメイン定義言語)は,既定のソルバが利用可能な形式であり,現代的なヒューリスティック検索機能の豊富な配列への扉を開くものです。
学習過程に前置する洗練された自然言語は学習表現の複雑さを著しく減少させ、「キューブ的グラフ」のグラフ理論的な概念とのつながりを明らかにし、学習記号表現の理想的性質のより深い理解への扉を開く。
強力なドメイン非依存ヒューリスティックは,視覚障害者探索の到達範囲を超えている視覚15-puzzleインスタンスを,ドメイン依存報酬情報に対する膨大なトレーニングを必要とする強化学習アプローチに頼らずに解決できることを示す。
関連論文リスト
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
動的ネットアーキテクチャ(DNA)と呼ばれる新しいインテリジェントシステムアーキテクチャを提案する。
DNAは繰り返し安定化されたネットワークに依存し、それを視覚に応用するために議論する。
論文 参考訳(メタデータ) (2024-07-08T06:22:10Z) - Emergence and Function of Abstract Representations in Self-Supervised
Transformers [0.0]
本研究では,部分的にマスキングされた視覚シーンを再構築するために訓練された小型トランスフォーマーの内部動作について検討する。
ネットワークは、データセットのすべての意味的特徴をエンコードする中間抽象表現(抽象表現)を開発する。
正確な操作実験を用いて、抽象化がネットワークの意思決定プロセスの中心であることを実証する。
論文 参考訳(メタデータ) (2023-12-08T20:47:15Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis [0.5409704301731713]
本稿では,目標表現と階層的ポリシの両方を同時に学習するFeudal HRLアルゴリズムを提案する。
複雑なナビゲーションタスクに対する我々のアプローチを評価し、学習された表現が解釈可能で、転送可能であり、データ効率のよい学習結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-09-14T12:39:26Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Reachability Analysis [0.0]
本研究では,環境状態の集合を抽象化する創発的表現によるサブゴール発見のための発達機構を提案する。
我々は、この表現をポリシーとともに徐々に学習し、それをナビゲーションタスクで評価して、学習した表現が解釈可能であり、結果としてデータ効率が向上することを示すHRLアルゴリズムを作成する。
論文 参考訳(メタデータ) (2023-09-12T06:53:11Z) - On Binding Objects to Symbols: Learning Physical Concepts to Understand
Real from Fake [155.6741526791004]
我々は、ディープニューラルネットワークが合成データを生成する驚くべき能力に照らして、古典的な信号と記号の障壁を再考する。
物理オブジェクトを抽象概念として特徴付け,それ以前の解析を用いて,物理オブジェクトが有限なアーキテクチャで符号化可能であることを示す。
我々は、有限時間でデジタルIDに物理的実体を結合することは、有限資源で可能であると結論付けた。
論文 参考訳(メタデータ) (2022-07-25T17:21:59Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - Temporal Abstractions-Augmented Temporally Contrastive Learning: An
Alternative to the Laplacian in RL [140.12803111221206]
強化学習において、ラプラシアングラフはタスク非依存の設定において貴重なツールであることが証明されている。
そこで本研究では,非一様優先度設定において,ラプラシアン表現の表現性および所望の性質を回復可能な代替手法を提案する。
非一様条件のラプラシアンの代替として成功し、連続的な制御環境に挑戦する。
論文 参考訳(メタデータ) (2022-03-21T22:07:48Z) - Reward Propagation Using Graph Convolutional Networks [61.32891095232801]
本稿では,グラフ表現学習のアイデアを活用した潜在機能学習フレームワークを提案する。
我々のアプローチは、強化学習の確率論的推論と組み合わせて、重要な要素として使用するグラフ畳み込みネットワークに依存している。
論文 参考訳(メタデータ) (2020-10-06T04:38:16Z) - Mutual Information Maximization for Robust Plannable Representations [82.83676853746742]
モデルに基づく強化学習のための情報理論表現学習アルゴリズムMIROを提案する。
提案手法は, 邪魔や散らかったシーンの存在下で, 再建目的よりも頑健であることを示す。
論文 参考訳(メタデータ) (2020-05-16T21:58:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。