論文の概要: Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis
- arxiv url: http://arxiv.org/abs/2309.07675v2
- Date: Wed, 22 Nov 2023 10:24:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 18:26:43.941551
- Title: Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis
- Title(参考訳): 階層型強化学習における目標空間の抽象化
- Authors: Mehdi Zadem and Sergio Mover and Sao Mai Nguyen
- Abstract要約: 本稿では,目標表現と階層的ポリシの両方を同時に学習するFeudal HRLアルゴリズムを提案する。
複雑なナビゲーションタスクに対する我々のアプローチを評価し、学習された表現が解釈可能で、転送可能であり、データ効率のよい学習結果をもたらすことを示す。
- 参考スコア(独自算出の注目度): 0.5409704301731713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-ended learning benefits immensely from the use of symbolic methods for
goal representation as they offer ways to structure knowledge for efficient and
transferable learning. However, the existing Hierarchical Reinforcement
Learning (HRL) approaches relying on symbolic reasoning are often limited as
they require a manual goal representation. The challenge in autonomously
discovering a symbolic goal representation is that it must preserve critical
information, such as the environment dynamics. In this paper, we propose a
developmental mechanism for goal discovery via an emergent representation that
abstracts (i.e., groups together) sets of environment states that have similar
roles in the task. We introduce a Feudal HRL algorithm that concurrently learns
both the goal representation and a hierarchical policy. The algorithm uses
symbolic reachability analysis for neural networks to approximate the
transition relation among sets of states and to refine the goal representation.
We evaluate our approach on complex navigation tasks, showing the learned
representation is interpretable, transferrable and results in data efficient
learning.
- Abstract(参考訳): オープンディビジョン学習は、効率的で転送可能な学習のために知識を構造化する方法を提供するため、目標表現にシンボリックな方法を使用することで大きなメリットがあります。
しかしながら、既存の階層強化学習(HRL)アプローチは、しばしば手動の目標表現を必要とするため、象徴的推論に依存している。
象徴的な目標表現を自律的に発見する上での課題は、環境力学のような重要な情報を保存する必要があることである。
本稿では,課題に類似した役割を持つ環境状態の集合を抽象化する創発的表現を用いて,目標発見のための発達メカニズムを提案する。
目的表現と階層ポリシーの両方を同時に学習するFeudal HRLアルゴリズムを導入する。
このアルゴリズムは、ニューラルネットワークのシンボリックリーチビリティ解析を用いて、状態の集合間の遷移関係を近似し、目標表現を洗練させる。
複雑なナビゲーションタスクに対する我々のアプローチを評価し、学習された表現が解釈可能で、転送可能で、データ効率のよい学習結果を示す。
関連論文リスト
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Reachability Analysis [0.0]
本研究では,環境状態の集合を抽象化する創発的表現によるサブゴール発見のための発達機構を提案する。
我々は、この表現をポリシーとともに徐々に学習し、それをナビゲーションタスクで評価して、学習した表現が解釈可能であり、結果としてデータ効率が向上することを示すHRLアルゴリズムを作成する。
論文 参考訳(メタデータ) (2023-09-12T06:53:11Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
本稿では,深層表現学習の補助的正規化として,新たな学習対象符号化を提案する。
具体的には、より差別的な表現を促進するために、マージンベースの三重項損失と、提案した目標符号上の相関整合損失を設計する。
論文 参考訳(メタデータ) (2023-05-30T01:38:54Z) - Symbolic Visual Reinforcement Learning: A Scalable Framework with
Object-Level Abstraction and Differentiable Expression Search [63.3745291252038]
DiffSESは、離散的なシンボルポリシーを発見する新しいシンボリック学習手法である。
生のピクセルレベルの入力の代わりにオブジェクトレベルの抽象化を使用することで、DiffSESはシンボリック表現の単純さとスケーラビリティの利点を活用することができる。
我々の実験は、DiffSESが最先端のシンボルRL法よりもシンプルでスケーラブルなシンボリックポリシーを生成することができることを示した。
論文 参考訳(メタデータ) (2022-12-30T17:50:54Z) - Discovering Generalizable Spatial Goal Representations via Graph-based
Active Reward Learning [17.58129740811116]
我々は、報酬学習アプローチ、グラフベースの等価マッピング(GEM)を提案する。
GEMは、オブジェクト間の重要な空間関係を示すグラフと、グラフの各エッジに対する状態同値写像による空間目標仕様を表す。
GEMは,学習目標表現の高次ベースラインに対する一般化性を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-11-24T18:59:06Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
本稿では,サンプル効率の向上と政策一般化を目的としたスキル学習フレームワークDR-GRLを提案する。
本稿では,解釈可能かつ制御可能な表現を学習するための空間変換オートエンコーダ(STAE)を提案する。
DR-GRLは, 試料効率と政策一般化において, 従来の手法よりも有意に優れていたことを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-28T09:05:14Z) - Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS) [13.141761152863868]
我々のニューロシンボリックアーキテクチャは、画像のみから簡潔で効果的な離散状態遷移モデルを生成するために、エンドツーエンドで訓練されていることを示す。
私たちのターゲット表現は、既成の問題解決者が使いこなせる形で既に存在しており、現代の検索機能への扉を開いています。
論文 参考訳(メタデータ) (2020-04-27T15:01:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。