Bare-Excitation Ground State of a Spinless-Fermion -- Boson Model and
$W$-State Engineering in an Array of Superconducting Qubits and Resonators
- URL: http://arxiv.org/abs/2004.13055v3
- Date: Tue, 28 Dec 2021 13:25:39 GMT
- Title: Bare-Excitation Ground State of a Spinless-Fermion -- Boson Model and
$W$-State Engineering in an Array of Superconducting Qubits and Resonators
- Authors: Vladimir M. Stojanovic
- Abstract summary: This work unravels an interesting property of a one-dimensional lattice model that describes a single itinerant spinless fermion (excitation) coupled to zero-dimensional bosons through two different nonlocal-coupling mechanisms.
It is demonstrated here how this last property of the lattice model can be exploited for a fast, deterministic preparation of multipartite $W$ states in a readily realizable system of inductively-coupled superconducting qubits and microwave resonators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work unravels an interesting property of a one-dimensional lattice model
that describes a single itinerant spinless fermion (excitation) coupled to
zero-dimensional (dispersionless) bosons through two different
nonlocal-coupling mechanisms. Namely, below a critical value of the effective
excitation-boson coupling strength the exact ground state of this model is the
zero-quasimomentum Bloch state of a bare (i.e., completely undressed)
excitation. It is demonstrated here how this last property of the lattice model
under consideration can be exploited for a fast, deterministic preparation of
multipartite $W$ states in a readily realizable system of inductively-coupled
superconducting qubits and microwave resonators.
Related papers
- Ground-state entanglement spectrum of a generic model with nonlocal
excitation-phonon coupling [0.0]
Ground-state entanglement spectrum of a model of excitation-phonon interaction is numerically evaluated here.
A transition between a bare excitation and a heavily phonon-dressed (polaronic) one can be thought of as a transition between vanishing and finite entanglement.
The implications of excitation-phonon entanglement for $W$-state engineering in superconducting and neutral-atom-based qubit arrays are also discussed.
arXiv Detail & Related papers (2023-12-01T18:16:11Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1305119700024195]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré $\rm{WS}_2$/$\rm{WSe}_2$ heterobilayer [1.5312601525030873]
We study the interplay between fermionic and bosonic populations using a transition metal dichalcogenides heterobilayer device.
We measure exciton diffusion, which remains constant upon increasing pumping intensity, as opposed to the expected behavior of a weakly interacting gas of bosons.
Our system provides a controllable approach to the exploration of quantum many-body model.
arXiv Detail & Related papers (2023-04-19T15:18:18Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Spectral features of polaronic excitations in a superconducting analog
simulator [0.0]
We investigate spectral properties of polaronic excitations within the framework of an analog quantum simulator.
The system emulates a lattice model that describes a nonlocal coupling of an itinerant spinless-fermion excitation to dispersionless (Einstein-type) phonons.
We show that -- based on the numerically evaluated spectral function and its well-known relation with the survival probability of the initial, bare-excitation Bloch state (the Loschmidt echo) -- one can make predictions about the system dynamics following an excitation-phonon interaction.
arXiv Detail & Related papers (2022-12-30T18:19:59Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Scalable $W$-type entanglement resource in neutral-atom arrays with
Rydberg-dressed resonant dipole-dipole interaction [0.0]
A scalable entanglement resource of this type can even be obtained under completely different physical circumstances.
A special instance of twisted $W$ states -- namely, $pi$-twisted ones -- can be engineered in one-dimensional arrays of cold neutral atoms.
arXiv Detail & Related papers (2021-01-27T07:27:16Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.