論文の概要: Self-Supervised Attention Learning for Depth and Ego-motion Estimation
- arxiv url: http://arxiv.org/abs/2004.13077v2
- Date: Mon, 5 Dec 2022 19:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:57:31.944783
- Title: Self-Supervised Attention Learning for Depth and Ego-motion Estimation
- Title(参考訳): 奥行き推定のための自己監督型注意学習
- Authors: Assem Sadek and Boris Chidlovskii
- Abstract要約: 画像列からの深度とエゴモーション推定の問題に対処する。
近年の領域の進歩は、画像再構成を自己指導的手法で両タスクの深層学習モデルを訓練することを提案する。
本稿では,現在のアプローチの仮定と限界を再検討し,深度とエゴモーションの推定性能を向上させるための2つの改善点を提案する。
- 参考スコア(独自算出の注目度): 11.117357750374035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of depth and ego-motion estimation from image
sequences. Recent advances in the domain propose to train a deep learning model
for both tasks using image reconstruction in a self-supervised manner. We
revise the assumptions and the limitations of the current approaches and
propose two improvements to boost the performance of the depth and ego-motion
estimation. We first use Lie group properties to enforce the geometric
consistency between images in the sequence and their reconstructions. We then
propose a mechanism to pay an attention to image regions where the image
reconstruction get corrupted. We show how to integrate the attention mechanism
in the form of attention gates in the pipeline and use attention coefficients
as a mask. We evaluate the new architecture on the KITTI datasets and compare
it to the previous techniques. We show that our approach improves the
state-of-the-art results for ego-motion estimation and achieve comparable
results for depth estimation.
- Abstract(参考訳): 画像列からの深度とエゴモーション推定の問題に対処する。
近年の領域の進歩は、画像再構成を自己指導的手法で両タスクの深層学習モデルを訓練することを提案する。
我々は,現在のアプローチの仮定と限界を改訂し,奥行き推定とエゴモーション推定の性能向上のための2つの改善を提案する。
まず,シーケンス内の画像間の幾何学的一貫性と再構成を実現するために,リー群特性を用いる。
次に,画像再構成が破損した領域に注意を払う機構を提案する。
また,注意係数をマスクとして使用することにより,注意機構をパイプライン内の注意ゲートの形で統合する方法を示す。
我々は、KITTIデータセット上で新しいアーキテクチャを評価し、以前の手法と比較した。
提案手法は,エゴモーション推定の最先端結果を改善し,深度推定と同等の結果が得られることを示す。
関連論文リスト
- Towards Cross-View-Consistent Self-Supervised Surround Depth Estimation [9.569646683579899]
連続画像からの自己監督下周深度推定は経済的な代替手段を提供する。
従来のSSSDE法では、画像間で情報を融合する異なるメカニズムが提案されているが、それらのいくつかは、クロスビュー制約を明示的に考慮している。
本稿では,SSSDEのクロスビュー一貫性を高めるために,効率的で一貫したポーズ推定設計と2つの損失関数を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:29:05Z) - Attention-Guided Masked Autoencoders For Learning Image Representations [16.257915216763692]
Masked Autoencoders (MAE) はコンピュータビジョンタスクの教師なし事前訓練のための強力な方法として確立されている。
本稿では,注意誘導損失関数を用いて再建過程を通知する。
評価の結果,事前学習したモデルでは,バニラMAEよりも遅延表現が優れていることがわかった。
論文 参考訳(メタデータ) (2024-02-23T08:11:25Z) - Disentangled Pre-training for Image Matting [74.10407744483526]
画像マッチングは、深層モデルのトレーニングをサポートするために高品質なピクセルレベルの人間のアノテーションを必要とする。
本研究では、無限個のデータを活用する自己教師付き事前学習手法を提案し、マッチング性能を向上する。
論文 参考訳(メタデータ) (2023-04-03T08:16:02Z) - Revisiting Image Reconstruction for Semi-supervised Semantic
Segmentation [16.27277238968567]
画像再構成を補助課題として利用し、半教師付きセマンティックセグメンテーションフレームワークに組み込むという考え方を再考する。
驚くことに、このような半教師付き学習の古いアイデアは、最先端のセマンティックセグメンテーションアルゴリズムと競合する結果をもたらす。
論文 参考訳(メタデータ) (2023-03-17T06:31:06Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
シーン深度と3次元運動場を協調的に予測する新しいDyna-Depthformerフレームワークを提案する。
まず,多視点の相関を一連の自己・横断的層を通じて活用し,深度特徴表現の強化を図る。
第2に,動的物体の運動場をセマンティック・プレセプションを使わずに推定するワーピングに基づく運動ネットワークを提案する。
論文 参考訳(メタデータ) (2023-01-14T09:43:23Z) - Deformable Image Registration with Deep Network Priors: a Study on
Longitudinal PET Images [0.5949967357689445]
本稿では,Deep Image Priorに触発されて,画像登録問題に取り組むためのレギュレータとして,Deep Architectureの異なる利用法を提案する。
変形場を制約する先行モデルである深層ピラミッド構造に頼って,MIRRBAと呼ばれる対象固有の変形可能な登録手法を提案する。
深層建築の正規化力を実証し,登録のための深層学習手法におけるアーキテクチャの役割を理解するための新しい要素を提示する。
論文 参考訳(メタデータ) (2021-11-22T10:58:14Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
本稿では,多フレーム画像復元作業によく用いられる最大後部定式化の深部再パラメータ化を提案する。
提案手法は,学習された誤差メトリックと,対象画像の潜在表現を導入することによって導かれる。
我々は、バースト復調およびバースト超解像データセットに関する包括的な実験を通して、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-08-18T17:57:02Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。