論文の概要: NAS-DIP: Learning Deep Image Prior with Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2008.11713v1
- Date: Wed, 26 Aug 2020 17:59:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 21:45:23.987975
- Title: NAS-DIP: Learning Deep Image Prior with Neural Architecture Search
- Title(参考訳): NAS-DIP: ニューラルネットワークによる深層画像の学習
- Authors: Yun-Chun Chen, Chen Gao, Esther Robb, Jia-Bin Huang
- Abstract要約: 近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
- 参考スコア(独自算出の注目度): 65.79109790446257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown that the structure of deep convolutional neural
networks can be used as a structured image prior for solving various inverse
image restoration tasks. Instead of using hand-designed architectures, we
propose to search for neural architectures that capture stronger image priors.
Building upon a generic U-Net architecture, our core contribution lies in
designing new search spaces for (1) an upsampling cell and (2) a pattern of
cross-scale residual connections. We search for an improved network by
leveraging an existing neural architecture search algorithm (using
reinforcement learning with a recurrent neural network controller). We validate
the effectiveness of our method via a wide variety of applications, including
image restoration, dehazing, image-to-image translation, and matrix
factorization. Extensive experimental results show that our algorithm performs
favorably against state-of-the-art learning-free approaches and reaches
competitive performance with existing learning-based methods in some cases.
- Abstract(参考訳): 近年の研究では、深層畳み込みニューラルネットワークの構造が、様々な逆画像復元タスクの解決に先立って構造化画像として使用できることが示されている。
手作業で設計したアーキテクチャを使う代わりに、より強力な画像の先行をキャプチャするニューラルネットワークアーキテクチャを提案する。
汎用的なU-Netアーキテクチャを基盤として,(1)アップサンプリングセルのための新しい検索空間を設計し,(2)クロススケールな残差接続のパターンを構築した。
既存のニューラルネットワーク探索アルゴリズム(recurrent neural network controllerを用いた強化学習)を利用して、改良されたネットワークを探索する。
本手法の有効性を検証するために,画像復元,デハジング,画像から画像への変換,行列因子分解などの幅広い応用を行った。
広範な実験結果から,本アルゴリズムは最先端学習フリーアプローチに対して好適に動作し,既存の学習ベース手法との競合性能に到達できることがわかった。
関連論文リスト
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - DQNAS: Neural Architecture Search using Reinforcement Learning [6.33280703577189]
畳み込みニューラルネットワークは様々な画像関連アプリケーションで使われている。
本稿では,強化学習の原則を取り入れた,ニューラルネットワークの自動探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-17T04:01:47Z) - Single Cell Training on Architecture Search for Image Denoising [16.72206392993489]
コンポーネントブロックレベルに着目して最適な探索問題を再構成する。
さらに,空間的およびチャネル的ミスマッチを扱うための,革新的な次元マッチングモジュールを統合する。
提案したDenoising Prior Neural Architecture Search (DPNAS) は、1つのGPUで1日で画像復元タスクの最適なアーキテクチャ検索を完了させることで実証した。
論文 参考訳(メタデータ) (2022-12-13T04:47:24Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Deep Unrolled Network for Video Super-Resolution [0.45880283710344055]
ビデオスーパーリゾリューション(VSR)は、対応する低リゾリューション(LR)バージョンから高リゾリューション(HR)画像のシーケンスを再構築することを目的としています。
伝統的に、VSR問題の解法は、画像形成や動きの仮定に関する事前知識を利用する反復アルゴリズムに基づいている。
ディープラーニング(DL)アルゴリズムは、大量の画像から空間パターンを効率的に学習できます。
未使用の最適化技術に基づく新しいVSRニューラルネットワークを提案し,その性能を議論する。
論文 参考訳(メタデータ) (2021-02-23T14:35:09Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction [36.636219616998225]
そこで我々は,手作業ではなくNASによるMR画像再構成問題に対して,新しい,効率的なネットワークを提案する。
実験の結果,検索したネットワークは,従来の最先端手法と比較して,より良好な再構成結果が得られることがわかった。
提案手法は, MR再構成問題に対するコストと再構成性能のトレードオフを, 高い一般化性で向上させることができる。
論文 参考訳(メタデータ) (2020-02-22T04:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。