On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks
- URL: http://arxiv.org/abs/2004.13233v2
- Date: Tue, 23 Feb 2021 20:32:36 GMT
- Title: On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks
- Authors: Shixiang Chen, Alfredo Garcia and Shahin Shahrampour
- Abstract summary: The Moreau subgradient method converges linear sharpness problems in machine learning.
A distributed implementation of the subgradient method with a theoretical guarantee is proposed.
- Score: 13.385373310554327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stochastic subgradient method is a widely-used algorithm for solving
large-scale optimization problems arising in machine learning. Often these
problems are neither smooth nor convex. Recently, Davis et al. [1-2]
characterized the convergence of the stochastic subgradient method for the
weakly convex case, which encompasses many important applications (e.g., robust
phase retrieval, blind deconvolution, biconvex compressive sensing, and
dictionary learning). In practice, distributed implementations of the projected
stochastic subgradient method (stoDPSM) are used to speed-up risk minimization.
In this paper, we propose a distributed implementation of the stochastic
subgradient method with a theoretical guarantee. Specifically, we show the
global convergence of stoDPSM using the Moreau envelope stationarity measure.
Furthermore, under a so-called sharpness condition, we show that deterministic
DPSM (with a proper initialization) converges linearly to the sharp minima,
using geometrically diminishing step-size. We provide numerical experiments to
support our theoretical analysis.
Related papers
- Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
This paper develops and analyzes an efficient Federated Averaging Gradient Stream (RFedAGS) algorithm.
Numerical simulations conducted on synthetic and real-world data demonstrate the performance of the proposed RFedAGS.
arXiv Detail & Related papers (2024-09-11T12:28:42Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Diffusion Stochastic Optimization for Min-Max Problems [33.73046548872663]
The optimistic gradient method is useful in addressing minimax optimization problems.
Motivated by the observation that the conventional version suffers from the need for a large batch size, we introduce and analyze a new formulation termed Samevareps-generativeOGOG.
arXiv Detail & Related papers (2024-01-26T01:16:59Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
Problems [39.197569803430646]
Minimax optimization plays an important role in many machine learning tasks such as adversarial networks (GANs) and adversarial training.
Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting.
arXiv Detail & Related papers (2023-04-21T11:38:41Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
We discuss an application of quadratic Approximation to statistical estimation of high-dimensional sparse parameters.
We show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution.
arXiv Detail & Related papers (2022-10-23T23:23:23Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Stability and Generalization of Stochastic Gradient Methods for Minimax
Problems [71.60601421935844]
Many machine learning problems can be formulated as minimax problems such as Generative Adversarial Networks (GANs)
We provide a comprehensive generalization analysis of examples from training gradient methods for minimax problems.
arXiv Detail & Related papers (2021-05-08T22:38:00Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.