Riemannian Federated Learning via Averaging Gradient Stream
- URL: http://arxiv.org/abs/2409.07223v1
- Date: Wed, 11 Sep 2024 12:28:42 GMT
- Title: Riemannian Federated Learning via Averaging Gradient Stream
- Authors: Zhenwei Huang, Wen Huang, Pratik Jawanpuria, Bamdev Mishra,
- Abstract summary: This paper develops and analyzes an efficient Federated Averaging Gradient Stream (RFedAGS) algorithm.
Numerical simulations conducted on synthetic and real-world data demonstrate the performance of the proposed RFedAGS.
- Score: 8.75592575216789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, federated learning has garnered significant attention as an efficient and privacy-preserving distributed learning paradigm. In the Euclidean setting, Federated Averaging (FedAvg) and its variants are a class of efficient algorithms for expected (empirical) risk minimization. This paper develops and analyzes a Riemannian Federated Averaging Gradient Stream (RFedAGS) algorithm, which is a generalization of FedAvg, to problems defined on a Riemannian manifold. Under standard assumptions, the convergence rate of RFedAGS with fixed step sizes is proven to be sublinear for an approximate stationary solution. If decaying step sizes are used, the global convergence is established. Furthermore, assuming that the objective obeys the Riemannian Polyak-{\L}ojasiewicz property, the optimal gaps generated by RFedAGS with fixed step size are linearly decreasing up to a tiny upper bound, meanwhile, if decaying step sizes are used, then the gaps sublinearly vanish. Numerical simulations conducted on synthetic and real-world data demonstrate the performance of the proposed RFedAGS.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
We show sharp results for the implicit regularization imposed by the gradient flow of Diagonal Linear Networks.
We link this to the phenomenon of phase transitions in generalized hardness of approximation.
Non-sharpness of our results would imply that the GHA phenomenon would not occur for the basis pursuit optimization problem.
arXiv Detail & Related papers (2023-07-13T13:27:51Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Riemannian Natural Gradient Methods [21.14740680011498]
We introduce the notion of Fisher information matrix in the manifold setting, which can be viewed as a natural extension of the natural gradient method.
We establish the almost-sure global convergence of our proposed method under standard assumptions.
Numerical experiments on applications arising from machine learning demonstrate the advantages of the proposed method over state-of-the-art ones.
arXiv Detail & Related papers (2022-07-15T04:33:10Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks [13.385373310554327]
The Moreau subgradient method converges linear sharpness problems in machine learning.
A distributed implementation of the subgradient method with a theoretical guarantee is proposed.
arXiv Detail & Related papers (2020-04-28T01:01:49Z) - Self-Concordant Analysis of Frank-Wolfe Algorithms [3.3598755777055374]
In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature.
We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations.
arXiv Detail & Related papers (2020-02-11T11:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.