Learning Interpretable and Discrete Representations with Adversarial
Training for Unsupervised Text Classification
- URL: http://arxiv.org/abs/2004.13255v1
- Date: Tue, 28 Apr 2020 02:53:59 GMT
- Title: Learning Interpretable and Discrete Representations with Adversarial
Training for Unsupervised Text Classification
- Authors: Yau-Shian Wang and Hung-Yi Lee and Yun-Nung Chen
- Abstract summary: TIGAN learns to encode texts into two disentangled representations, including a discrete code and a continuous noise.
The extracted topical words for representing latent topics show that TIGAN learns coherent and highly interpretable topics.
- Score: 87.28408260725138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning continuous representations from unlabeled textual data has been
increasingly studied for benefiting semi-supervised learning. Although it is
relatively easier to interpret discrete representations, due to the difficulty
of training, learning discrete representations for unlabeled textual data has
not been widely explored. This work proposes TIGAN that learns to encode texts
into two disentangled representations, including a discrete code and a
continuous noise, where the discrete code represents interpretable topics, and
the noise controls the variance within the topics. The discrete code learned by
TIGAN can be used for unsupervised text classification. Compared to other
unsupervised baselines, the proposed TIGAN achieves superior performance on six
different corpora. Also, the performance is on par with a recently proposed
weakly-supervised text classification method. The extracted topical words for
representing latent topics show that TIGAN learns coherent and highly
interpretable topics.
Related papers
- XAI-CLASS: Explanation-Enhanced Text Classification with Extremely Weak
Supervision [6.406111099707549]
XAI-CLASS is a novel explanation-enhanced weakly-supervised text classification method.
It incorporates word saliency prediction as an auxiliary task.
XAI-CLASS outperforms other weakly-supervised text classification methods significantly.
arXiv Detail & Related papers (2023-10-31T23:24:22Z) - TAX: Tendency-and-Assignment Explainer for Semantic Segmentation with
Multi-Annotators [31.36818611460614]
Tendency-and-Assignment Explainer (TAX) is designed to offer interpretability at the annotator and assignment levels.
We show that our TAX can be applied to state-of-the-art network architectures with comparable performances.
arXiv Detail & Related papers (2023-02-19T12:40:22Z) - Deep Semi-supervised Learning with Double-Contrast of Features and
Semantics [2.2230089845369094]
This paper proposes an end-to-end deep semi-supervised learning double contrast of semantic and feature.
We leverage information theory to explain the rationality of double contrast of semantics and features.
arXiv Detail & Related papers (2022-11-28T09:08:19Z) - Context-based Virtual Adversarial Training for Text Classification with
Noisy Labels [1.9508698179748525]
We propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels.
Unlike the previous works, the proposed method performs the adversarial training at the context level rather than the inputs.
We conduct extensive experiments on four text classification datasets with two types of label noises.
arXiv Detail & Related papers (2022-05-29T14:19:49Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - Towards Accurate Scene Text Recognition with Semantic Reasoning Networks [52.86058031919856]
We propose a novel end-to-end trainable framework named semantic reasoning network (SRN) for accurate scene text recognition.
GSRM is introduced to capture global semantic context through multi-way parallel transmission.
Results on 7 public benchmarks, including regular text, irregular text and non-Latin long text, verify the effectiveness and robustness of the proposed method.
arXiv Detail & Related papers (2020-03-27T09:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.