An Open Dataset and Model for Language Identification
- URL: http://arxiv.org/abs/2305.13820v1
- Date: Tue, 23 May 2023 08:43:42 GMT
- Title: An Open Dataset and Model for Language Identification
- Authors: Laurie Burchell, Alexandra Birch, Nikolay Bogoychev and Kenneth
Heafield
- Abstract summary: We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201 languages.
We make both the model and the dataset available to the research community.
- Score: 84.15194457400253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language identification (LID) is a fundamental step in many natural language
processing pipelines. However, current LID systems are far from perfect,
particularly on lower-resource languages. We present a LID model which achieves
a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201
languages, outperforming previous work. We achieve this by training on a
curated dataset of monolingual data, the reliability of which we ensure by
auditing a sample from each source and each language manually. We make both the
model and the dataset available to the research community. Finally, we carry
out detailed analysis into our model's performance, both in comparison to
existing open models and by language class.
Related papers
- Benchmarking Pre-trained Large Language Models' Potential Across Urdu NLP tasks [0.9786690381850356]
Large Language Models (LLMs) pre-trained on multilingual data have revolutionized natural language processing research.
This study presents an in-depth examination of prominent LLMs, across 14 tasks using 15 Urdu datasets.
Experiments show that SOTA models surpass all the encoder-decoder pre-trained language models in all Urdu NLP tasks with zero-shot learning.
arXiv Detail & Related papers (2024-05-24T11:30:37Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
In this paper, we propose GeMQuAD - a semi-supervised learning approach, applied to a dataset generated through ICL with just one example in the target language.
We iteratively identify high-quality data to enhance model performance, especially for low-resource multilingual setting.
Our framework outperforms the machine translation-augmented model by 0.22/1.68 F1/EM points for Hindi and 0.82/1.37 F1/EM points for Spanish on the MLQA dataset.
arXiv Detail & Related papers (2024-04-14T06:55:42Z) - GlossLM: A Massively Multilingual Corpus and Pretrained Model for Interlinear Glossed Text [39.846419973203744]
We compile the largest existing corpus of interlinear glossed text (IGT) data from a variety of sources, covering over 450k examples across 1.8k languages.
We normalize much of our data to follow a standard set of labels across languages.
As many languages lack sufficient monolingual data, we pretrain a large multilingual model on our corpus.
We demonstrate the utility of this model by finetuning it on monolingual corpora, outperforming SOTA models by up to 6.6%.
arXiv Detail & Related papers (2024-03-11T03:21:15Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M is an LID model that satisfies the desiderata of wide coverage, reliability and efficiency.
It identifies 1665 languages, a large increase in coverage compared to prior work.
arXiv Detail & Related papers (2023-10-24T23:45:57Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
We introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark.
We investigate techniques inspired from recent Connectionist Temporal Classification ( CTC) studies to help the model handle the large number of languages.
Our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER.
arXiv Detail & Related papers (2023-02-24T18:59:51Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z) - X-FACT: A New Benchmark Dataset for Multilingual Fact Checking [21.2633064526968]
We introduce X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing real-world claims.
The dataset contains short statements in 25 languages and is labeled for veracity by expert fact-checkers.
arXiv Detail & Related papers (2021-06-17T05:09:54Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - Learning to Learn Morphological Inflection for Resource-Poor Languages [105.11499402984482]
We propose to cast the task of morphological inflection - mapping a lemma to an indicated inflected form - for resource-poor languages as a meta-learning problem.
Treating each language as a separate task, we use data from high-resource source languages to learn a set of model parameters.
Experiments with two model architectures on 29 target languages from 3 families show that our suggested approach outperforms all baselines.
arXiv Detail & Related papers (2020-04-28T05:13:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.