論文の概要: Let's be Humorous: Knowledge Enhanced Humor Generation
- arxiv url: http://arxiv.org/abs/2004.13317v2
- Date: Sat, 4 Jul 2020 03:04:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 23:00:34.777931
- Title: Let's be Humorous: Knowledge Enhanced Humor Generation
- Title(参考訳): ユーモラスにしよう:知識に富んだHummor Generation
- Authors: Hang Zhang, Dayiheng Liu, Jiancheng Lv, Cheng Luo
- Abstract要約: 関連する知識をセットして、パンチラインを生成する方法について検討する。
我々の知る限り、これは知識強化モデルでパンチラインを生成する最初の試みである。
実験結果から,本手法は知識を生かして,流動的で面白いパンチラインを生成できることが示唆された。
- 参考スコア(独自算出の注目度): 26.886255899651893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generation of humor is an under-explored and challenging problem.
Previous works mainly utilize templates or replace phrases to generate humor.
However, few works focus on freer forms and the background knowledge of humor.
The linguistic theory of humor defines the structure of a humor sentence as
set-up and punchline. In this paper, we explore how to generate a punchline
given the set-up with the relevant knowledge. We propose a framework that can
fuse the knowledge to end-to-end models. To our knowledge, this is the first
attempt to generate punchlines with knowledge enhanced model. Furthermore, we
create the first humor-knowledge dataset. The experimental results demonstrate
that our method can make use of knowledge to generate fluent, funny punchlines,
which outperforms several baselines.
- Abstract(参考訳): ユーモアの生成は、未熟で挑戦的な問題である。
以前の作品は主にテンプレートやフレーズの置き換えを使ってユーモアを生み出していた。
しかし、自由な形式とユーモアの背景知識に焦点を当てた作品はほとんどない。
ユーモアの言語理論は、ユーモア文の構造をセットアップとパンチラインとして定義する。
本稿では,関連する知識を集合したパンチラインの生成方法について検討する。
エンド・ツー・エンドのモデルに知識を融合できるフレームワークを提案する。
我々の知る限り、これは知識強化モデルでパンチラインを生成する最初の試みである。
さらに,最初のユーモア知識データセットを作成する。
実験結果から,本手法は知識を生かして,流動的で面白いパンチラインを生成できることが示された。
関連論文リスト
- Can Pre-trained Language Models Understand Chinese Humor? [74.96509580592004]
本論文は,事前学習言語モデル(PLM)のユーモア理解能力を体系的に研究する最初の論文である。
提案した評価フレームワークのすべてのデータ要件を完全に満たす中国の総合的ユーモアデータセットを構築した。
中国のユーモアデータセットに関する実証的研究は、ユーモア理解と生成におけるPLMの将来の最適化に非常に役立つ貴重な観察結果をもたらす。
論文 参考訳(メタデータ) (2024-07-04T18:13:38Z) - The Naughtyformer: A Transformer Understands Offensive Humor [63.05016513788047]
Redditから抽出された新しいジョークデータセットを導入し、Naughtyformerと呼ばれる微調整されたトランスフォーマーを用いてサブタイプ分類タスクを解決する。
本モデルでは, ジョークの攻撃性の検出が, 最先端の手法と比較して有意に優れていることを示す。
論文 参考訳(メタデータ) (2022-11-25T20:37:58Z) - ExPUNations: Augmenting Puns with Keywords and Explanations [88.58174386894913]
我々は、キーワードの詳細なクラウドソースアノテーションで既存の句のデータセットを拡張する。
これは、パント専用の広範囲できめ細かなアノテーションを備えた最初のユーモアデータセットである。
句分類支援のための説明生成とキーワード条件付き句生成という2つのタスクを提案する。
論文 参考訳(メタデータ) (2022-10-24T18:12:02Z) - Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results [84.37263300062597]
風は人間の社会的行動、感情、認知の重要な要素である。
現在のユーモア検出法は、ステージ化されたデータのみに基づいており、「現実世界」の応用には不十分である。
約11時間の記録を含むPassau-Spontaneous Football Coach Humorデータセットを導入することで,この障害への対処に寄与する。
論文 参考訳(メタデータ) (2022-09-28T17:36:47Z) - DeHumor: Visual Analytics for Decomposing Humor [36.300283476950796]
公言におけるユーモラスな行動を分析する視覚システムであるDeHumorを開発した。
それぞれの具体例の構成要素を直感的に明らかにするために、DeHumorはユーモラスな動画をマルチモーダルな特徴に分解する。
DeHumorはユーモアのユーモアの例として、さまざまなビルディングブロックをハイライトすることができる。
論文 参考訳(メタデータ) (2021-07-18T04:01:07Z) - Towards Conversational Humor Analysis and Design [17.43766386622031]
本論文は,Incongruity Theoryに基づく,特定の設定からのパンチラインの分類と生成という2つの概念を基本とする。
ユーモア生成には、ニューラルモデルを使用し、古典的なルールベースのアプローチとニューラルアプローチをマージしてハイブリッドモデルを作成します。
次に、我々のモデルを人間の記述したジョークと人間の評価者の助けを借りて、二重盲検研究で使用し比較する。
論文 参考訳(メタデータ) (2021-02-28T15:22:57Z) - Uncertainty and Surprisal Jointly Deliver the Punchline: Exploiting
Incongruity-Based Features for Humor Recognition [0.6445605125467573]
ジョークを2つの異なるコンポーネントに分割します。セットアップとパンチラインです。
ユーモアの不整合理論に触発され、セマンティック不確実性を生み出す部分としてセットをモデル化する。
ますます強力な言語モデルによって、私たちはGPT-2言語モデルにパンチラインとともにセットアップをフィードすることができた。
論文 参考訳(メタデータ) (2020-12-22T13:48:09Z) - Federated Learning with Diversified Preference for Humor Recognition [40.89453484353102]
We propose the FedHumor approach to recognize humorous text contents in a Personal manner through federated learning (FL)。
様々なユーモア嗜好を持つ人々に対して、FedHumorのユーモア内容の正確な認識において、9つの最先端ユーモア認識アプローチと比較して、実験は大きな利点を示す。
論文 参考訳(メタデータ) (2020-12-03T03:24:24Z) - Dutch Humor Detection by Generating Negative Examples [5.888646114353371]
覚醒検出は通常二分分類タスクとしてモデル化され、与えられたテキストがジョークか他のタイプのテキストかを予測するように訓練される。
本稿では,本来のジョークデータセットを模倣するテキスト生成アルゴリズムを提案し,学習アルゴリズムの難易度を高める。
古典的ニューラルネットワークアプローチのユーモア検出能力と,最先端のオランダ語モデルであるRobBERTとの比較を行った。
論文 参考訳(メタデータ) (2020-10-26T15:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。