論文の概要: A lite parametric model for the Hemodynamic Response Function
- arxiv url: http://arxiv.org/abs/2004.13361v1
- Date: Tue, 28 Apr 2020 08:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 22:43:37.707043
- Title: A lite parametric model for the Hemodynamic Response Function
- Title(参考訳): 血行動態応答関数のためのliteパラメトリックモデル
- Authors: Manuel Morante
- Abstract要約: 本論文は血行動態応答関数HRFの定性モデルを示す。
他の進歩と異なり、提案モデルは他の類似のHRFモデルと比較してパラメータの数が少ない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When working with task-related fMRI data, one of the most crucial parts of
the data analysis consists of determining a proper estimate of the BOLD
response. The following document presents a lite model for the Hemodynamic
Response Function HRF. Between other advances, the proposed model present less
number of parameters compared to other similar HRF alternative, which reduces
its optimization complexity and facilitates its potential applications.
- Abstract(参考訳): タスク関連fMRIデータを扱う場合、データ解析の最も重要な部分はBOLD応答の適切な推定値を決定することである。
下記の文書は血行力学的応答関数hrfのliteモデルを示している。
他の進歩と異なり、提案モデルは他の類似のHRF代替案と比較してパラメータの数が少ないため、最適化の複雑さが小さくなり、潜在的な応用が容易になる。
関連論文リスト
- Optimizing Hyperparameters for Quantum Data Re-Uploaders in Calorimetric Particle Identification [11.099632666738177]
本稿では,1量子ビットデータ再アップロード(QRU)量子モデルの粒子分類への応用について述べる。
このモデルは、強力な分類性能を提供しながら、最小の量子ビットを必要とする。
論文 参考訳(メタデータ) (2024-12-16T23:10:00Z) - Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems [2.7212274374272543]
連立条件拡散モデルに基づく逆問題解法(JCDI)を開発した。
JCDIは、パラメータの一般化性を改善するために、マルチイベント観測を同時に入力するジョイントコンディショニングアーキテクチャを組み込んでいる。
WECC CLMのシミュレーション研究により、提案したJCDIは縮退パラメータの不確かさを効果的に低減することを示した。
論文 参考訳(メタデータ) (2024-11-15T18:53:08Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Real-time Human Response Prediction Using a Non-intrusive Data-driven
Model Reduction Scheme [0.0]
本稿では,この問題に対処するための新しい2段階MOR方式を提案する。
その結果,提案手法は近似パラメータ化ODEに適しており,時間依存パラメータを扱えることがわかった。
論文 参考訳(メタデータ) (2021-10-26T11:33:11Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
性能向上のために冗長パラメータを再利用できるかどうかを検討する。
実験と分析は異なるデータセットとNTTアーキテクチャで体系的に行われる。
論文 参考訳(メタデータ) (2020-10-06T11:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。