論文の概要: Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems
- arxiv url: http://arxiv.org/abs/2411.10431v1
- Date: Fri, 15 Nov 2024 18:53:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:16.541871
- Title: Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems
- Title(参考訳): WECC複合負荷モデルにおける連立条件拡散モデルを用いた電力系統のパラメータ縮退
- Authors: Feiqin Zhu, Dmitrii Torbunov, Yihui Ren, Zhongjing Jiang, Tianqiao Zhao, Amirthagunaraj Yogarathnam, Meng Yue,
- Abstract要約: 連立条件拡散モデルに基づく逆問題解法(JCDI)を開発した。
JCDIは、パラメータの一般化性を改善するために、マルチイベント観測を同時に入力するジョイントコンディショニングアーキテクチャを組み込んでいる。
WECC CLMのシミュレーション研究により、提案したJCDIは縮退パラメータの不確かさを効果的に低減することを示した。
- 参考スコア(独自算出の注目度): 2.7212274374272543
- License:
- Abstract: Data-driven modeling for dynamic systems has gained widespread attention in recent years. Its inverse formulation, parameter estimation, aims to infer the inherent model parameters from observations. However, parameter degeneracy, where different combinations of parameters yield the same observable output, poses a critical barrier to accurately and uniquely identifying model parameters. In the context of WECC composite load model (CLM) in power systems, utility practitioners have observed that CLM parameters carefully selected for one fault event may not perform satisfactorily in another fault. Here, we innovate a joint conditional diffusion model-based inverse problem solver (JCDI), that incorporates a joint conditioning architecture with simultaneous inputs of multi-event observations to improve parameter generalizability. Simulation studies on the WECC CLM show that the proposed JCDI effectively reduces uncertainties of degenerate parameters, thus the parameter estimation error is decreased by 42.1% compared to a single-event learning scheme. This enables the model to achieve high accuracy in predicting power trajectories under different fault events, including electronic load tripping and motor stalling, outperforming standard deep reinforcement learning and supervised learning approaches. We anticipate this work will contribute to mitigating parameter degeneracy in system dynamics, providing a general parameter estimation framework across various scientific domains.
- Abstract(参考訳): 近年,動的システムのデータ駆動モデリングが注目されている。
その逆の定式化、パラメータ推定は、観測から固有のモデルパラメータを推測することを目的としている。
しかし、パラメータの異なる組み合わせが同じ観測可能な出力を生成するパラメータ縮退は、モデルパラメータを正確に一意に識別するために重要な障壁となる。
電力系統におけるWECC複合負荷モデル(CLM)の文脈において、実用的実践者は、ある障害事象に対して慎重に選択されたCLMパラメータが、別の障害において満足して機能しない可能性があることを見てきた。
本稿では,JCDI(Joint Conditional diffusion model-based inverse problemsolvr)を考案し,パラメータの一般化性を向上させるために,マルチイベント観測を同時入力したジョイントコンディショニングアーキテクチャを提案する。
WECC CLMのシミュレーション研究により,提案したJCDIは退化パラメータの不確かさを効果的に低減し,パラメータ推定誤差を1点学習方式と比較して42.1%削減することを示した。
これにより、電子的負荷トリップやモータストール、標準深部強化学習、教師付き学習アプローチなど、異なる障害イベント下でのパワートラジェクトリの予測精度が向上する。
本研究は, システム力学におけるパラメータ縮退の緩和に寄与し, 様々な科学領域にまたがる一般パラメータ推定フレームワークを提供すると期待している。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Activated Parameter Locating via Causal Intervention for Model Merging [26.98015572633289]
モデルマージは複数のモデルを1つのモデルに組み合わせ、追加のトレーニングを必要とせずに、説得力のある一般化を実現する。
既存のモデルでは、デルタパラメータの一部を落として、パフォーマンスを維持しながらコンフリクトを緩和できることが示されている。
本稿では、因果的介入を利用して重要度を推定し、より正確なパラメータのドロップとコンフリクトの軽減を可能にするアクティブ・ロケーティング(APL)手法を提案する。
論文 参考訳(メタデータ) (2024-08-18T14:00:00Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
PEFTにクロスブロックオーケストレーション機構を組み、SAM(Segment Anything Model)の様々な下流シナリオへの適応を可能にする。
本稿では,超複素層から重みが生じる線形射影ヘッドを導入するブロック内拡張モジュールを提案する。
提案手法は,約1Kのパラメータのみを付加した新規シナリオにおいて,セグメンテーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-28T11:23:34Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
支配方程式がなければ、パラメトリック還元次代理モデルを非侵襲的に構築する必要がある。
我々の研究は、パラメータのスナップショットを効率的に表示するための非侵入的最適性基準を提供する。
カーネルベースの浅層ニューラルネットワークを用いた能動的学習駆動サロゲートモデルを提案する。
論文 参考訳(メタデータ) (2023-06-09T18:01:14Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - On the Parameter Combinations That Matter and on Those That do Not [0.0]
モデルパラメータの非識別性を特徴付けるためのデータ駆動型手法を提案する。
Diffusion Mapsとその拡張を利用することで、動的出力の振る舞いを特徴づけるために必要なパラメータの最小の組み合わせを発見する。
論文 参考訳(メタデータ) (2021-10-13T13:46:23Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
generative adversarial network (gans) は、非凹型ミニマックス最適化問題を訓練するために用いられる。
ある理論は、グローバル最適解に対する勾配降下 (gd) の重要性を示している。
ニューラルネットワークジェネレータと線形判別器を併用した多層GANにおいて、GDAは、基礎となる非凹面min-max問題の大域的なサドル点に収束することを示す。
論文 参考訳(メタデータ) (2021-04-12T16:23:37Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
性能向上のために冗長パラメータを再利用できるかどうかを検討する。
実験と分析は異なるデータセットとNTTアーキテクチャで体系的に行われる。
論文 参考訳(メタデータ) (2020-10-06T11:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。