Scaled quantum theory. The bouncing ball problem
- URL: http://arxiv.org/abs/2410.10351v1
- Date: Mon, 14 Oct 2024 10:09:48 GMT
- Title: Scaled quantum theory. The bouncing ball problem
- Authors: S. V. Mousavi, S. Miret-Artés,
- Abstract summary: The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Within the so-called scaled quantum theory, the standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential. In this framework, the quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states and after it has been particularized to the case of pure states. The main purpose of this work is to show how this theory works for conservative systems and the quantum-classical transition is carried out in a continuous and smooth way, being equivalent to a nonlinear differential wave equation which contains a transition parameter ranging continuously from one to zero and covering all dynamical regimes in-between the two extreme quantum and classical regimes. This parameter can be seen as a degree of quantumness where all intermediate dynamical regimes show quantum features but are fading gradually when approaching to the classical value.
Related papers
- Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Quantum Classical Transition for Mixed States: The Scaled Von Neumann
Equation [0.0]
We propose a smooth transition wave equation from a quantum to classical regime in the framework of von Neumann formalism for ensembles.
This led us to develop a scaled statistical theory following the well-known Wigner-Moyal approach of quantum mechanics.
arXiv Detail & Related papers (2023-06-01T20:29:20Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.