論文の概要: DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2004.13458v4
- Date: Thu, 10 Sep 2020 16:19:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 23:28:17.823301
- Title: DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
- Title(参考訳): DiVA:Deep Metric Learningのための多様な視覚的特徴集約
- Authors: Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua
Bengio, Bj\"orn Ommer, and Joseph Paul Cohen
- Abstract要約: 視覚的類似性は多くのコンピュータビジョンアプリケーションにおいて重要な役割を果たす。
ディープ・メトリック・ラーニング(DML)は、そのような類似性を学ぶための強力なフレームワークである。
我々は,概念的に異なるデータ関係を対象とする複数の補完学習タスクを提案し,研究する。
我々は、訓練信号を集約する単一モデルを学び、その結果、強力な一般化と最先端のパフォーマンスが得られる。
- 参考スコア(独自算出の注目度): 83.48587570246231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Similarity plays an important role in many computer vision
applications. Deep metric learning (DML) is a powerful framework for learning
such similarities which not only generalize from training data to identically
distributed test distributions, but in particular also translate to unknown
test classes. However, its prevailing learning paradigm is class-discriminative
supervised training, which typically results in representations specialized in
separating training classes. For effective generalization, however, such an
image representation needs to capture a diverse range of data characteristics.
To this end, we propose and study multiple complementary learning tasks,
targeting conceptually different data relationships by only resorting to the
available training samples and labels of a standard DML setting. Through
simultaneous optimization of our tasks we learn a single model to aggregate
their training signals, resulting in strong generalization and state-of-the-art
performance on multiple established DML benchmark datasets.
- Abstract(参考訳): 視覚的類似性は多くのコンピュータビジョンアプリケーションにおいて重要な役割を果たす。
ディープラーニング(DML)は、トレーニングデータから同一分散テスト分布への一般化だけでなく、特に未知のテストクラスへの変換といった類似性を学習するための強力なフレームワークである。
しかし、その一般的な学習パラダイムは、クラス差別的教師付きトレーニングであり、通常、トレーニングクラスを分離する専門的な表現となる。
しかし、効果的な一般化のためには、そのような画像表現は多様なデータ特性を捉える必要がある。
そこで本研究では,標準DML設定のトレーニングサンプルとラベルのみを用いて,概念的に異なるデータ関係を目標とした複数の補完学習タスクを提案し,研究する。
タスクの同時最適化を通じて、トレーニング信号を集約する単一モデルを学び、複数の確立されたDMLベンチマークデータセット上で、強力な一般化と最先端のパフォーマンスをもたらす。
関連論文リスト
- Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning [32.15608637930748]
2つのデシダラタの間にはトレードオフがあることを示し、同時に両方を達成できない可能性があることを示す。
我々は、理論データモデルを用いて分析を行い、より多様な事前学習データにより、異なるタスクに対してより多様な機能が得られる一方で、タスク固有の機能に重点を置いていないことを示す。
論文 参考訳(メタデータ) (2023-02-28T22:14:33Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Self-Supervised Visual Representation Learning Using Lightweight
Architectures [0.0]
自己教師付き学習では、マシンによってアノテーションが生成されるデータセットを使用して、プレテキストタスクを解決するためにモデルが訓練される。
我々は、画像データから特徴を抽出する最も顕著な前文タスクを批判的に検討する。
我々は、他の全てのパラメータを均一に保ちながら、様々な自己監督技術の性能について研究する。
論文 参考訳(メタデータ) (2021-10-21T14:13:10Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
マルチモーダルデータを取り入れた視覚表現の学習手法を開発した。
本手法は,各モダリティおよびセマンティクス情報内の本質的なデータ特性をクロスモーダル相関から同時に利用する。
統合フレームワークにマルチモーダルトレーニングを組み込むことで,より強力で汎用的な視覚的特徴を学習することができる。
論文 参考訳(メタデータ) (2021-04-26T19:23:36Z) - Multimodal Clustering Networks for Self-supervised Learning from
Unlabeled Videos [69.61522804742427]
本稿では,共通のマルチモーダル埋め込み空間を学習する自己監督型トレーニングフレームワークを提案する。
インスタンスレベルのコントラスト学習の概念をマルチモーダルクラスタリングステップで拡張し,モダリティ間の意味的類似性を捉える。
結果として得られる埋め込みスペースは、見えないデータセットや異なるドメインからでも、すべてのモダリティにわたるサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2021-04-26T15:55:01Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
本研究は,少ショット関係分類(FSRC)に焦点を当てる。
クラスプロトタイプの表現にラベル単語を追加するための適応的混合機構を提案する。
FewRelでは、異なる数ショット(FS)設定で実験が行われた。
論文 参考訳(メタデータ) (2021-01-10T11:25:42Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。