論文の概要: A Linguistically Driven Framework for Query Expansion via Grammatical
Constituent Highlighting and Role-Based Concept Weighting
- arxiv url: http://arxiv.org/abs/2004.13481v1
- Date: Sat, 25 Apr 2020 01:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 22:01:03.163806
- Title: A Linguistically Driven Framework for Query Expansion via Grammatical
Constituent Highlighting and Role-Based Concept Weighting
- Title(参考訳): 文法的構成要素強調表示とロールベース概念重み付けによるクエリ拡張のための言語駆動フレームワーク
- Authors: Bhawani Selvaretnam, Mohammed Belkhatir
- Abstract要約: 関心のコンセプトは、探索目標のジストを表す中核的な概念として認識される。
検索目標を特定し、クエリ構造を完了するのに役立つ残りのクエリ構成成分は、記述的、関係的、構造的に分類される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a linguistically-motivated query expansion
framework that recognizes and en-codes significant query constituents that
characterize query intent in order to improve retrieval performance.
Concepts-of-Interest are recognized as the core concepts that represent the
gist of the search goal whilst the remaining query constituents which serve to
specify the search goal and complete the query structure are classified as
descriptive, relational or structural. Acknowledging the need to form
semantically-associated base pairs for the purpose of extracting related
potential expansion concepts, an algorithm which capitalizes on syntactical
dependencies to capture relationships between adjacent and non-adjacent query
concepts is proposed. Lastly, a robust weighting scheme that duly emphasizes
the importance of query constituents based on their linguistic role within the
expanded query is presented. We demonstrate improvements in retrieval
effectiveness in terms of increased mean average precision (MAP) garnered by
the proposed linguistic-based query expansion framework through experimentation
on the TREC ad hoc test collections.
- Abstract(参考訳): 本稿では,クエリインテントを特徴付ける重要なクエリ構成要素を認識・エンコードし,検索性能を向上させる言語的クエリ拡張フレームワークを提案する。
関心の概念は探索目標の要点を表す中核概念として認識され、探索目標を指定してクエリ構造を完成させる残りのクエリ構成成分は記述的、関係的、構造的に分類される。
関連する潜在的な拡張概念を抽出するために意味論的に関連づけられたベースペアを形成する必要性を認識し,隣接するクエリ概念と非隣接クエリ概念の関係をキャプチャする構文依存を活かしたアルゴリズムを提案する。
最後に,拡張クエリにおける言語的役割に基づくクエリ構成要素の重要性を厳密に強調する,堅牢な重み付けスキームを提案する。
本稿では,TREC アドホックテストコレクションを用いた実験により,言語ベースのクエリ拡張フレームワークにより得られた平均平均精度(MAP)の向上による検索効率の向上を示す。
関連論文リスト
- Hybrid Semantic Search: Unveiling User Intent Beyond Keywords [0.0]
本稿では,ユーザの意図を理解する上で,従来のキーワードベースの検索の限界に対処する。
非意味的な検索エンジン、LLM(Large Language Models)、埋め込みモデルの強みを活用する新しいハイブリッド検索手法を導入する。
論文 参考訳(メタデータ) (2024-08-17T16:04:31Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU [0.0]
この研究は、拡張QPのためのクエリにおける情報、ナビゲーション、およびトランザクションベースのインテントを分析した。
効率的なQPのために、データはEpanechnikov Kernel-Ordering Pointsを用いて構造化され、クラスタリング構造(EK-OPTICS)を同定する。
抽出された特徴、検出された意図、構造化データは、MGR-LAU(Multi-head Gated Recurrent Learnable Attention Unit)に入力される。
論文 参考訳(メタデータ) (2024-06-06T20:28:05Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Query-Utterance Attention with Joint modeling for Query-Focused Meeting
Summarization [4.763356598070365]
本稿では,クエリ・Utterance Attentionに基づく共同モデリングトークンと発話を用いた問合せ対応フレームワークを提案する。
異なる粒度のクエリ関連性は、クエリに関連する要約を生成するのに寄与することを示す。
論文 参考訳(メタデータ) (2023-03-08T10:21:45Z) - Query Expansion Using Contextual Clue Sampling with Language Models [69.51976926838232]
本稿では,実効的なフィルタリング戦略と検索した文書の融合の組み合わせを,各文脈の生成確率に基づいて提案する。
我々の語彙マッチングに基づくアプローチは、よく確立された高密度検索モデルDPRと比較して、同様のトップ5/トップ20検索精度と上位100検索精度を実現する。
エンド・ツー・エンドのQAでは、読者モデルも我々の手法の恩恵を受けており、いくつかの競争基準に対してエクサクト・マッチのスコアが最も高い。
論文 参考訳(メタデータ) (2022-10-13T15:18:04Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
我々は、数発のテキスト内学習のための合理化促進策を再考する。
我々は、出力空間における合理的サンプリングを、性能を確実に向上させるキーコンポーネントとして特定する。
有理拡張アンサンブルは既存のプロンプト手法よりも正確で解釈可能な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-07-02T06:20:57Z) - Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval [98.62404433761432]
インターネット上のユーザ生成ビデオの急速な増加により、テキストベースのビデオ検索システムの必要性が高まっている。
従来の手法は主に単純なクエリによる検索における概念に基づくパラダイムを好んでいる。
木を増設したクロスモーダルを提案する。
クエリの言語構造とビデオの時間表現を共同で学習する手法。
論文 参考訳(メタデータ) (2020-07-06T02:50:27Z) - Coupled intrinsic and extrinsic human language resource-based query
expansion [0.0]
本稿では,クエリ構成エンコーディングや拡張概念抽出,概念重み付けといった言語特性を活かしたクエリ拡張フレームワークを提案する。
実世界のデータセットに対する徹底的な経験的評価は、ユニグラム言語モデル、関連モデル、逐次依存に基づく手法に対する我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-04-23T11:22:38Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
ユーザの検索行動を模倣する認知的再構成パターンが強調されている。
問合せの概念表現を考慮し,これらのパターンの適用を形式化する。
遺伝的アルゴリズムに基づく重み付けプロセスでは、概念的役割タイプに応じて用語に重点を置くことができる。
論文 参考訳(メタデータ) (2020-04-21T14:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。