論文の概要: User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU
- arxiv url: http://arxiv.org/abs/2406.04490v1
- Date: Thu, 6 Jun 2024 20:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 18:07:23.091900
- Title: User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU
- Title(参考訳): CFLISとMGR-LAUを用いたユーザインテント認識とセマンティックキャッシュ最適化に基づくクエリ処理フレームワーク
- Authors: Sakshi Mahendru,
- Abstract要約: この研究は、拡張QPのためのクエリにおける情報、ナビゲーション、およびトランザクションベースのインテントを分析した。
効率的なQPのために、データはEpanechnikov Kernel-Ordering Pointsを用いて構造化され、クラスタリング構造(EK-OPTICS)を同定する。
抽出された特徴、検出された意図、構造化データは、MGR-LAU(Multi-head Gated Recurrent Learnable Attention Unit)に入力される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query Processing (QP) is optimized by a Cloud-based cache by storing the frequently accessed data closer to users. Nevertheless, the lack of focus on user intention type in queries affected the efficiency of QP in prevailing works. Thus, by using a Contextual Fuzzy Linguistic Inference System (CFLIS), this work analyzed the informational, navigational, and transactional-based intents in queries for enhanced QP. Primarily, the user query is parsed using tokenization, normalization, stop word removal, stemming, and POS tagging and then expanded using the WordNet technique. After expanding the queries, to enhance query understanding and to facilitate more accurate analysis and retrieval in query processing, the named entity is recognized using Bidirectional Encoder UnispecNorm Representations from Transformers (BEUNRT). Next, for efficient QP and retrieval of query information from the semantic cache database, the data is structured using Epanechnikov Kernel-Ordering Points To Identify the Clustering Structure (EK-OPTICS). The features are extracted from the structured data. Now, sentence type is identified and intent keywords are extracted from the parsed query. Next, the extracted features, detected intents and structured data are inputted to the Multi-head Gated Recurrent Learnable Attention Unit (MGR-LAU), which processes the query based on a semantic cache database (stores previously interpreted queries to expedite effective future searches). Moreover, the query is processed with a minimum latency of 12856ms. Lastly, the Semantic Similarity (SS) is analyzed between the retrieved query and the inputted user query, which continues until the similarity reaches 0.9 and above. Thus, the proposed work surpassed the previous methodologies.
- Abstract(参考訳): クエリ処理(QP)は、頻繁にアクセスされるデータをユーザの近くに保存することで、クラウドベースのキャッシュによって最適化される。
それでも、クエリにおけるユーザ意図型の重視の欠如は、一般的な作業におけるQPの効率に影響した。
そこで、CFLIS(Contextual Fuzzy Linguistic Inference System)を用いて、QPの強化のためのクエリにおける情報、ナビゲーション、トランザクションベースのインテントを分析した。
主に、ユーザクエリはトークン化、正規化、停止語除去、スムーミング、POSタグ付けを使用して解析され、その後WordNet技術を使って拡張される。
クエリを拡張し、クエリ理解を強化し、クエリ処理におけるより正確な分析と検索を容易にするため、名前付きエンティティは、変換器(BEUNRT)からの双方向エンコーダUnispecNorm表現を使用して認識される。
次に、セマンティックキャッシュデータベースからの効率的なQPとクエリ情報の検索のために、データをEpanechnikov Kernel-Ordering Points to Identify the Clustering Structure (EK-OPTICS)を用いて構造化する。
特徴は構造化データから抽出される。
文型が識別され、解析されたクエリからインテントキーワードが抽出される。
次に、抽出された特徴、検出された意図、構造化データを、セマンティックキャッシュデータベースに基づいてクエリを処理するMulti-head Gated Recurrent Learnable Attention Unit(MGR-LAU)に入力する。
さらに、クエリは12856msの最小レイテンシで処理される。
最後に、セマンティック類似度(SS)は、検索されたクエリと入力されたユーザクエリの間で分析され、類似度が0.9以上になるまで続く。
このように、提案された研究は以前の手法を超越した。
関連論文リスト
- Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
論文 参考訳(メタデータ) (2024-06-23T05:02:21Z) - LLMs for Test Input Generation for Semantic Caches [1.8628177380024746]
大規模言語モデル(LLM)は、最先端のセマンティック機能をソフトウェアシステムに追加することを可能にする。
規模によっては、何千ものユーザーへのサービス提供コストは、ユーザーエクスペリエンスにも大きく影響します。
本稿では、構造化されていない文書から類似した質問を生成するテスト入力生成にLLMを使用するアプローチであるVaryGenを提案する。
論文 参考訳(メタデータ) (2024-01-16T06:16:33Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
エンティティベース関連モデル(EBRM)と呼ばれる新しいモデルを提案する。
この分解により、高精度にクロスエンコーダQE関連モジュールを使用できる。
また、ユーザログから自動生成されたQEデータによるQEモジュールの事前トレーニングにより、全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-07-01T15:44:53Z) - WISK: A Workload-aware Learned Index for Spatial Keyword Queries [46.96314606580924]
本稿では,空間的キーワードクエリの学習指標であるWISKを提案する。
We show that WISK achieve up to 8x speedup in querying time with comparable storage overhead。
論文 参考訳(メタデータ) (2023-02-28T03:45:25Z) - Decoding a Neural Retriever's Latent Space for Query Suggestion [28.410064376447718]
本稿では,有意なクエリをその潜在表現から復号することが可能であること,また,潜在空間の正しい方向に移動すると,関連する段落を検索するクエリを復号することができることを示す。
クエリデコーダを用いて、MSMarcoのクエリ再構成の大規模な合成データセットを生成する。
このデータに基づいて、クエリー提案の適用のために擬似関連フィードバック(PRF)T5モデルを訓練する。
論文 参考訳(メタデータ) (2022-10-21T16:19:31Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
クエリ理解は、ユーザの検索意図を探索し、ユーザが最も望まれる情報を発見できるようにする上で、重要な役割を果たす。
近年、プレトレーニング言語モデル (PLM) は様々な自然言語処理タスクを進歩させてきた。
本稿では,クエリコンテンツとクエリグラフの両方を活用可能な,グラフ強化事前学習フレームワークGE-BERTを提案する。
論文 参考訳(メタデータ) (2022-04-03T16:50:30Z) - Learning Query Expansion over the Nearest Neighbor Graph [94.80212602202518]
グラフクエリ拡張(GQE)が提示され、教師付き方法で学習され、クエリの拡張近傍で集約を実行する。
この技術は既知のベンチマークよりも最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-12-05T19:48:42Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z) - APRF-Net: Attentive Pseudo-Relevance Feedback Network for Query
Categorization [12.634704014206294]
クエリ分類のためのレアクエリの表現を強化するために,textbfAttentive textbfPseudo textbfRelevance textbfFeedback textbfNetwork (APRF-Net) という新しいディープニューラルネットワークを提案する。
以上の結果から,APRF-Netはクエリ分類をF1@1$スコアで5.9%改善し,レアクエリでは8.2%向上した。
論文 参考訳(メタデータ) (2021-04-23T02:34:08Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。