Self-induced transparency in warm and strongly interacting Rydberg gases
- URL: http://arxiv.org/abs/2004.13626v2
- Date: Mon, 4 May 2020 22:54:25 GMT
- Title: Self-induced transparency in warm and strongly interacting Rydberg gases
- Authors: Zhengyang Bai, Charles S. Adams, Guoxiang Huang, Weibin Li
- Abstract summary: We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
- Score: 1.433758865948252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study dispersive optical nonlinearities of short pulses propagating in
high number density, warm atomic vapors where the laser resonantly excites
atoms to Rydberg $P$-states via a single-photon transition. Three different
regimes of the light-atom interaction, dominated by either Doppler broadening,
Rydberg atom interactions, or decay due to thermal collisions between
groundstate and Rydberg atoms, are described. We show that using fast Rabi
flopping and strong Rydberg atom interactions, both in the order of gigahertz,
can overcome the Doppler effect as well as collisional decay, leading to a
sizable dispersive optical nonlinearity on nanosecond timescales. In this
regime, self-induced transparency (SIT) emerges when areas of the nanosecond
pulse are determined primarily by the Rydberg atom interaction, rather than the
area theorem of interaction-free SIT. We identify, both numerically and
analytically, the condition to realize Rydberg-SIT. Our study contributes to
efforts in achieving quantum information processing using glass cell
technologies.
Related papers
- Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds [3.893862886864584]
We infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations.
Specifically in $87$Sr, we study an intrinsic F"orster resonance, unique to divalent atoms with hyperfine-split thresholds.
We provide parameters for pair states that can be effectively described by single-channel Rydberg series.
arXiv Detail & Related papers (2024-07-31T23:24:58Z) - Continuous wave quantum light control via engineered Rydberg induced
dephasing [17.857341127079305]
We analyze several variations of a single-photon optical switch operating in the continuous wave regime.
The devices are based on ensembles of Rydberg atoms that interact through van der Waals interaction.
arXiv Detail & Related papers (2023-09-19T18:39:24Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Many-body radiative decay in strongly interacting Rydberg ensembles [0.0]
When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces.
We show that these interactions have also a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field.
We discuss how this collective dissipation - stemming from a mechanism different from the much studied super- and sub-radiance - accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
arXiv Detail & Related papers (2022-06-06T18:30:52Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Real-time detection of Rydberg state dynamics of cold atoms using an
optical cavity [0.0]
This work reports on the real-time detection of internal-state dynamics of cold Rb$87$ atoms excited to the $30D_5/2$ Rydberg state via two-photon excitation.
Results contribute to solving a recent controversy on the interplay between BBR-induced superradiance and Rydberg atom interactions.
arXiv Detail & Related papers (2021-09-30T08:24:04Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Photon-photon interactions in Rydberg-atom arrays [0.4129225533930965]
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states.
Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
arXiv Detail & Related papers (2021-01-27T13:17:40Z) - Tunable three-body loss in a nonlinear Rydberg medium [45.82374977939355]
Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions.
We study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings.
arXiv Detail & Related papers (2020-09-28T19:58:00Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.