Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds
- URL: http://arxiv.org/abs/2408.00195v1
- Date: Wed, 31 Jul 2024 23:24:58 GMT
- Title: Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds
- Authors: Frederic Hummel, Sebastian Weber, Johannes Moegerle, Henri Menke, Jonathan King, Benjamin Bloom, Sebastian Hofferberth, Ming Li,
- Abstract summary: We infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations.
Specifically in $87$Sr, we study an intrinsic F"orster resonance, unique to divalent atoms with hyperfine-split thresholds.
We provide parameters for pair states that can be effectively described by single-channel Rydberg series.
- Score: 3.893862886864584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum information processing with neutral atoms relies on Rydberg excitation for entanglement generation. While the use of heavy divalent or open-shell elements, such as strontium or ytterbium, has benefits due to their optically active core and a variety of possible qubit encodings, their Rydberg structure is generally complex. For some isotopes in particular, hyperfine interactions are relevant even for highly excited electronic states. We employ multi-channel quantum defect theory to infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations. We find that due to the high level density and sensitivities to external fields, experimental parameters must be precisely controlled. Specifically in ${}^{87}$Sr, we study an intrinsic F\"orster resonance, unique to divalent atoms with hyperfine-split thresholds, which simultaneously provides line stability with respect to external field fluctuations and enhanced long-range interactions. Additionally, we provide parameters for pair states that can be effectively described by single-channel Rydberg series. The explored pair states provide exciting opportunities for applications in the blockade regime as well as for more exotic long-range interactions such as largely flat, distance-independent potentials.
Related papers
- Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Realizing distance-selective interactions in a Rydberg-dressed atom
array [0.0]
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits.
Rydberg states are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states.
Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs.
arXiv Detail & Related papers (2021-10-19T17:39:48Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Rydberg Noisy-Dressing and applications in making soliton-molecules and
droplet quasi-crystals [0.0]
This article presents special inter-atomic interactions between Rydberg-dressed atoms by manipulating lasers' line-width.
The new interaction features a hybrid spatial profile containing plateaus and Gaussian peaks.
As an example, RnD's application in making stable gigantic 3D soliton molecules and in the formation of quasi-periodic droplet-crystals are discussed.
arXiv Detail & Related papers (2020-07-02T11:55:41Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.