論文の概要: Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline
- arxiv url: http://arxiv.org/abs/2004.13715v3
- Date: Wed, 7 Oct 2020 13:25:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 22:42:17.909095
- Title: Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline
- Title(参考訳): プライバシーを意識したレコメンデーションシステムがtwitterのホームタイムラインに挑戦
- Authors: Luca Belli, Sofia Ira Ktena, Alykhan Tejani, Alexandre Lung-Yut-Fong,
Frank Portman, Xiao Zhu, Yuanpu Xie, Akshay Gupta, Michael Bronstein, Amra
Deli\'c, Gabriele Sottocornola, Walter Anelli, Nazareno Andrade, Jessie
Smith, Wenzhe Shi
- Abstract要約: ACM RecSysが主催するRecSys 2020 Challengeは、このデータセットを使用してTwitterと提携している。
本稿では,ユーザエンゲージメントを予測しようとする研究者や専門家が直面する課題について述べる。
- 参考スコア(独自算出の注目度): 47.434392695347924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems constitute the core engine of most social network
platforms nowadays, aiming to maximize user satisfaction along with other key
business objectives. Twitter is no exception. Despite the fact that Twitter
data has been extensively used to understand socioeconomic and political
phenomena and user behaviour, the implicit feedback provided by users on Tweets
through their engagements on the Home Timeline has only been explored to a
limited extent. At the same time, there is a lack of large-scale public social
network datasets that would enable the scientific community to both benchmark
and build more powerful and comprehensive models that tailor content to user
interests. By releasing an original dataset of 160 million Tweets along with
engagement information, Twitter aims to address exactly that. During this
release, special attention is drawn on maintaining compliance with existing
privacy laws. Apart from user privacy, this paper touches on the key challenges
faced by researchers and professionals striving to predict user engagements. It
further describes the key aspects of the RecSys 2020 Challenge that was
organized by ACM RecSys in partnership with Twitter using this dataset.
- Abstract(参考訳): 現在、リコメンダシステムは、他の主要なビジネス目的と共にユーザの満足度を最大化することを目的として、ほとんどのソーシャルネットワークプラットフォームのコアエンジンとなっている。
Twitterも例外ではない。
twitterのデータは、社会経済的、政治的現象やユーザーの行動を理解するために広く使われているにもかかわらず、ユーザーのツイートに対する暗黙のフィードバックは、自宅のタイムラインでのエンゲージメントを通じて提供される。
同時に、大規模な公開ソーシャルネットワークデータセットが欠如しているため、科学コミュニティは、ユーザーの興味に合ったより強力で包括的なモデルを構築し、ベンチマークすることができる。
1億6000万ツイートのデータセットとエンゲージメント情報を提供することで、Twitterはまさにそれに対応することを目指している。
このリリースでは、既存のプライバシー法の遵守を維持することに特に注意が向けられている。
ユーザのプライバシは別として,本稿では,ユーザエンゲージメントの予測に尽力する研究者や専門家が直面する重要な課題について触れる。
さらに、ACM RecSysがこのデータセットを使用してTwitterとパートナーシップを結んだRecSys 2020 Challengeの重要な側面についても説明している。
関連論文リスト
- Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Retweet-BERT: Political Leaning Detection Using Language Features and
Information Diffusion on Social Networks [30.143148646797265]
Retweet-BERTは、シンプルでスケーラブルなモデルで、Twitterユーザーの政治的傾向を推定する。
我々の仮定は、同様のイデオロギーを共有する人々の間で、ネットワークや言語学のパターンがホモフィリーであることに由来する。
論文 参考訳(メタデータ) (2022-07-18T02:18:20Z) - A deep dive into the consistently toxic 1% of Twitter [9.669275987983447]
この調査は、112万のTwitterプロフィールから14年間のツイートと2億2300万以上のツイートをカバーしている。
有害なコンテンツの一貫性の観点から最も極端なプロファイルを選択し、彼らのツイートテキストと、彼らが共有したドメイン、ハッシュタグ、URLを調べました。
その結果、これらのプロファイルはハッシュタグ、URL、ドメインの多様性の低い狭いテーマに保たれており、数学的に互いに似ており、ボットのような振る舞いの可能性が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-16T04:21:48Z) - Twitter-Demographer: A Flow-based Tool to Enrich Twitter Data [31.19059013571499]
Twitter-Demographerは、Twitterのデータにツイートやユーザーに関する追加情報を加えるフローベースのツールだ。
フローベースのプログラミングパラダイムにインスパイアされた設計選択を議論し、容易にチェーン化して拡張可能なブラックボックスコンポーネントの使用について論じる。
論文 参考訳(メタデータ) (2022-01-26T14:59:17Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
本稿では,ソーシャル情報とユーザ・イテムの相互作用を融合させることにより,ソーシャル・レコメンデーションの問題であるソーシャル・リコメンデーションの緩和を提案する。
我々は textbfGraph Neural Network (FeSoG) を用いた textbfFedrated textbfSocial 推薦フレームワークを考案した。
論文 参考訳(メタデータ) (2021-11-21T09:41:39Z) - SOK: Seeing and Believing: Evaluating the Trustworthiness of Twitter
Users [4.609388510200741]
現在、どのニュースやユーザーが信頼できるか、どれがそうでないかを自動で判断する方法はない。
本研究では、Twitter上で5万人の政治家の行動を分析するモデルを作成しました。
政治Twitterのユーザを、ランダムな森林、多層パーセプトロン、サポートベクターマシンを使って、信頼あるいは信頼できないと分類した。
論文 参考訳(メタデータ) (2021-07-16T17:39:32Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Birdspotter: A Tool for Analyzing and Labeling Twitter Users [12.558187319452657]
BirdspotterはTwitterユーザーの分析とラベル付けを行うツールだ。
Birdspotter.mlは、計算されたメトリクスの探索的なビジュアライゼーションである。
我々は、完全なボット検出器に鳥のポッターを訓練する方法を示します。
論文 参考訳(メタデータ) (2020-12-04T02:25:07Z) - Study of the usability of LinkedIn: a social media platform meant to
connect employers and employees [91.3755431537592]
本稿では,LinkedInのユーザビリティをユーザ評価と専門家評価の両方を用いて評価する。
LinkedInアプリケーションの全体的なユーザビリティは、SUS(System Usability Scale)を使用して測定されている。
論文 参考訳(メタデータ) (2020-06-06T18:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。