Quantum-inspired Machine Learning on high-energy physics data
- URL: http://arxiv.org/abs/2004.13747v2
- Date: Fri, 9 Jul 2021 08:36:06 GMT
- Title: Quantum-inspired Machine Learning on high-energy physics data
- Authors: Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide
Zuliani, Donatella Lucchesi and Simone Montangero
- Abstract summary: We apply a quantum-inspired machine learning technique to the analysis and classification of data produced by the Large Hadron Collider at CERN.
In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from the proton-proton experiment, and how to interpret the classification results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Networks, a numerical tool originally designed for simulating quantum
many-body systems, have recently been applied to solve Machine Learning
problems. Exploiting a tree tensor network, we apply a quantum-inspired machine
learning technique to a very important and challenging big data problem in high
energy physics: the analysis and classification of data produced by the Large
Hadron Collider at CERN. In particular, we present how to effectively classify
so-called b-jets, jets originating from b-quarks from proton-proton collisions
in the LHCb experiment, and how to interpret the classification results. We
exploit the Tensor Network approach to select important features and adapt the
network geometry based on information acquired in the learning process.
Finally, we show how to adapt the tree tensor network to achieve optimal
precision or fast response in time without the need of repeating the learning
process. These results pave the way to the implementation of high-frequency
real-time applications, a key ingredient needed among others for current and
future LHCb event classification able to trigger events at the tens of MHz
scale.
Related papers
- Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
We develop a free hybrid quantum gradient classical convoluted graph neural network to predict formation energies of perovskite materials.
Our study suggests a new pathway to explore how quantum feature encoding and parametric quantum circuits can yield drastic improvements of complex machine learning algorithms.
arXiv Detail & Related papers (2024-05-08T16:43:25Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Hybrid Quantum Neural Network in High-dimensional Data Classification [1.4801853435122907]
We introduce a novel model architecture that combines classical convolutional layers with a quantum neural network.
The experiment is to classify high-dimensional audio data from the Bird-CLEF 2021 dataset.
arXiv Detail & Related papers (2023-12-02T04:19:23Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets [0.0]
Feature and data prototype selection techniques were studied to tackle this challenge.
A grid search was performed and quantum machine learning models were trained and benchmarked against classical shallow machine learning methods.
The performance of the quantum algorithms was found to be comparable to the classical ones, even when using large datasets.
arXiv Detail & Related papers (2022-11-06T22:45:37Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum Machine Learning for $b$-jet charge identification [0.0]
We present a new approach to identify if a jet contains a hadron formed by a $b$ or $barb quark at the moment of production, based on a Variational Quantum applied to simulated data of the LHCb experiment.
arXiv Detail & Related papers (2022-02-28T16:48:27Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.