Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets
- URL: http://arxiv.org/abs/2211.03233v4
- Date: Wed, 6 Dec 2023 19:47:05 GMT
- Title: Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets
- Authors: Miguel Ca\c{c}ador Peixoto, Nuno Filipe Castro, Miguel Crispim
Rom\~ao, Maria Gabriela Jord\~ao Oliveira, In\^es Ochoa
- Abstract summary: Feature and data prototype selection techniques were studied to tackle this challenge.
A grid search was performed and quantum machine learning models were trained and benchmarked against classical shallow machine learning methods.
The performance of the quantum algorithms was found to be comparable to the classical ones, even when using large datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum systems have significant limitations affecting the processing
of large datasets with high dimensionality, typical of high energy physics. In
the present paper, feature and data prototype selection techniques were studied
to tackle this challenge. A grid search was performed and quantum machine
learning models were trained and benchmarked against classical shallow machine
learning methods, trained both in the reduced and the complete datasets. The
performance of the quantum algorithms was found to be comparable to the
classical ones, even when using large datasets. Sequential Backward Selection
and Principal Component Analysis techniques were used for feature's selection
and while the former can produce the better quantum machine learning models in
specific cases, it is more unstable. Additionally, we show that such
variability in the results is caused by the use of discrete variables,
highlighting the suitability of Principal Component analysis transformed data
for quantum machine learning applications in the high energy physics context.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Benchmarking quantum machine learning kernel training for classification tasks [0.0]
This work performs a benchmark study of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) with a focus on classification tasks.
Two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap, are analyzed in this context.
Experimental results indicate that quantum methods exhibit varying performance across different datasets.
arXiv Detail & Related papers (2024-08-17T10:53:06Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning.
We present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels.
arXiv Detail & Related papers (2023-09-19T08:59:46Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Power of data in quantum machine learning [2.1012068875084964]
We show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
We propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime.
arXiv Detail & Related papers (2020-11-03T19:00:01Z) - Quantum-inspired Machine Learning on high-energy physics data [0.0]
We apply a quantum-inspired machine learning technique to the analysis and classification of data produced by the Large Hadron Collider at CERN.
In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from the proton-proton experiment, and how to interpret the classification results.
arXiv Detail & Related papers (2020-04-28T18:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.