論文の概要: Video Contents Understanding using Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2004.13959v1
- Date: Wed, 29 Apr 2020 05:18:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 14:00:03.430648
- Title: Video Contents Understanding using Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークを用いた映像コンテンツ理解
- Authors: Mohammadhossein Toutiaee, Abbas Keshavarzi, Abolfazl Farahani, John A.
Miller
- Abstract要約: 複数のクラスにまたがるビデオフレームシーケンスを分類するトランスファーラーニングの新たな応用を提案する。
この表現は、ディープニューラルネットワーク(DNN)の出現によって達成される
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel application of Transfer Learning to classify video-frame
sequences over multiple classes. This is a pre-weighted model that does not
require to train a fresh CNN. This representation is achieved with the advent
of "deep neural network" (DNN), which is being studied these days by many
researchers. We utilize the classical approaches for video classification task
using object detection techniques for comparison, such as "Google Video
Intelligence API" and this study will run experiments as to how those
architectures would perform in foggy or rainy weather conditions. Experimental
evaluation on video collections shows that the new proposed classifier achieves
superior performance over existing solutions.
- Abstract(参考訳): 複数のクラスにまたがるビデオフレームシーケンスを分類するトランスファーラーニングの新たな応用を提案する。
これは、新しいCNNをトレーニングする必要のないプレウェイトモデルである。
この表現は、近年多くの研究者によって研究されている"deep neural network"(dnn)の出現によって達成されている。
本研究は,Google Video Intelligence APIなどのオブジェクト検出技術を用いて,映像分類タスクの古典的手法を用いて,霧や雨の天候下でこれらのアーキテクチャがどのように機能するかを実験する。
ビデオコレクションの実験的評価により,新しい分類器が既存のソリューションよりも優れた性能を実現することが示された。
関連論文リスト
- Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Video Content Classification using Deep Learning [0.0]
本稿では、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を組み合わせたモデルを提案する。
モデルは、動画コンテンツの種類を特定し、それらを「アニメーション、ゲーム、自然コンテンツ、フラットコンテンツ」などのカテゴリに分類することができる。
論文 参考訳(メタデータ) (2021-11-27T04:36:17Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
畳み込みニューラルネットワーク(CNN)は多くの画像分類タスクの最先端技術であることが証明されている。
Proba-Vマルチスペクトル画像のクラウドマスキングにおける異なるCNNアーキテクチャの利用について検討する。
論文 参考訳(メタデータ) (2020-12-09T21:33:20Z) - Self-supervised Video Representation Learning by Pace Prediction [48.029602040786685]
本稿では,ビデオペース予測による自己指導型映像表現学習の課題に対処する。
人間の視覚系がビデオのペースに敏感であるという観察に由来する。
我々は、異なるペースでトレーニングクリップをランダムにサンプリングし、ニューラルネットワークに各ビデオクリップのペースを特定するよう依頼する。
論文 参考訳(メタデータ) (2020-08-13T12:40:24Z) - Generalized Few-Shot Video Classification with Video Retrieval and
Feature Generation [132.82884193921535]
従来の手法は,映像特徴学習の重要性を過小評価し,二段階的アプローチを提案する。
この単純なベースラインアプローチは、既存のベンチマークで20ポイント以上の精度で、以前の数ショットビデオ分類方法よりも優れていることを示す。
さらなる改善をもたらす2つの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-09T13:05:32Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
本稿では,ビデオにおける行動認識のための表現の教師なし学習の課題に対処する。
まず、このクラスの2つのトップパフォーマンス目標(インスタンス認識と局所集約)を適用することを提案する。
有望な性能を観察するが、定性的解析により、学習した表現が動きのパターンを捉えないことを示す。
論文 参考訳(メタデータ) (2020-06-28T22:23:03Z) - Detecting Forged Facial Videos using convolutional neural network [0.0]
我々は,より小さな(少ないパラメータで学習する)畳み込みニューラルネットワーク(CNN)を用いて,偽ビデオ検出のためのデータ駆動型アプローチを提案する。
提案手法の有効性を検証するため,FaceForensicsの公開データセットを用いて,フレームベースとビデオベースの両方の結果を詳細に検討した。
論文 参考訳(メタデータ) (2020-05-17T19:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。