論文の概要: Detecting Forged Facial Videos using convolutional neural network
- arxiv url: http://arxiv.org/abs/2005.08344v1
- Date: Sun, 17 May 2020 19:04:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 05:43:17.589590
- Title: Detecting Forged Facial Videos using convolutional neural network
- Title(参考訳): 畳み込みニューラルネットワークを用いた顔映像の偽造検出
- Authors: Neilesh Sambhu and Shaun Canavan
- Abstract要約: 我々は,より小さな(少ないパラメータで学習する)畳み込みニューラルネットワーク(CNN)を用いて,偽ビデオ検出のためのデータ駆動型アプローチを提案する。
提案手法の有効性を検証するため,FaceForensicsの公開データセットを用いて,フレームベースとビデオベースの両方の結果を詳細に検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose to detect forged videos, of faces, in online
videos. To facilitate this detection, we propose to use smaller (fewer
parameters to learn) convolutional neural networks (CNN), for a data-driven
approach to forged video detection. To validate our approach, we investigate
the FaceForensics public dataset detailing both frame-based and video-based
results. The proposed method is shown to outperform current state of the art.
We also perform an ablation study, analyzing the impact of batch size, number
of filters, and number of network layers on the accuracy of detecting forged
videos.
- Abstract(参考訳): 本稿では,オンラインビデオにおける顔の偽造映像の検出方法を提案する。
この検出を容易にするために,より小さな(少ない)畳み込みニューラルネットワーク(CNN)を用いて,データ駆動型ビデオ検出手法を提案する。
このアプローチを検証するために,フレームベースとビデオベースの両方の結果を詳述したfaceforensics public datasetを調査した。
提案手法は,現在の技術よりも優れていることを示す。
また, バッチサイズ, フィルタ数, ネットワーク層数の影響を解析したアブレーション実験を行い, 偽造映像の検出精度について検討した。
関連論文リスト
- Forensic Video Steganalysis in Spatial Domain by Noise Residual
Convolutional Neural Network [0.0]
本研究は, 画像ステガナシスに対する畳み込みニューラルネットワーク(CNN)に基づくアプローチを評価する。
ビデオステガノグラフィーデータセットを作成し、CNNを訓練して空間領域で法医学的ステガノリシスを行う。
我々はノイズ残差畳み込みニューラルネットワークを用いて埋め込み秘密を検出する。
論文 参考訳(メタデータ) (2023-05-29T13:17:20Z) - Video Segmentation Learning Using Cascade Residual Convolutional Neural
Network [0.0]
本研究では,残差情報を前景検出学習プロセスに組み込んだ新しい深層学習ビデオセグメンテーション手法を提案する。
Change Detection 2014とPetrobrasのプライベートデータセットであるPetrobrasROUTESで実施された実験は、提案手法の有効性を支持している。
論文 参考訳(メタデータ) (2022-12-20T16:56:54Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - PAT: Pseudo-Adversarial Training For Detecting Adversarial Videos [20.949656274807904]
我々は,攻撃の知識を必要とせず,映像中の対角フレームを検出するための,Pseudo-versa-Adrial Training (PAT) という,新しい単純なアルゴリズムを提案する。
UCF-101および20BN-Jesterデータセットによる実験結果から、PATは高い検出率で対向的なビデオフレームやビデオを検出することができることがわかった。
論文 参考訳(メタデータ) (2021-09-13T04:05:46Z) - Cloud based Scalable Object Recognition from Video Streams using
Orientation Fusion and Convolutional Neural Networks [11.44782606621054]
畳み込みニューラルネットワーク(CNN)は、インテリジェントな視覚オブジェクト認識を行うために広く利用されている。
CNNはいまだに深刻な精度低下、特に照明変動データセットに悩まされている。
視覚オブジェクト認識のための方向融合に基づく新しいCNN手法を提案する。
論文 参考訳(メタデータ) (2021-06-19T07:15:15Z) - Few-Shot Video Object Detection [70.43402912344327]
本稿では,Few-Shot Video Object Detection (FSVOD) を紹介する。
fsvod-500は500のクラスからなり、各カテゴリーにクラスバランスのビデオがある。
私達のTPNおよびTMN+は共同およびエンドツーエンドの訓練されます。
論文 参考訳(メタデータ) (2021-04-30T07:38:04Z) - Few-Shot Learning for Video Object Detection in a Transfer-Learning
Scheme [70.45901040613015]
ビデオ物体検出のための数発学習の新たな課題について検討する。
我々は,多数のベースクラスオブジェクトに対して映像物体検出を効果的に訓練するトランスファー学習フレームワークと,ノベルクラスオブジェクトのいくつかのビデオクリップを用いる。
論文 参考訳(メタデータ) (2021-03-26T20:37:55Z) - Improving DeepFake Detection Using Dynamic Face Augmentation [0.8793721044482612]
ほとんどの公開可能なDeepFake検出データセットには、限られたバリエーションがある。
ディープニューラルネットワークは、DeepFakeコンテンツの操作機能を検出するための学習ではなく、顔の特徴にオーバーフィットする傾向があります。
DeepFake検出を改善するために、CNN(Convolutional Neural Networks)をトレーニングするためのデータ拡張方法であるFace-Cutoutを紹介します。
論文 参考訳(メタデータ) (2021-02-18T20:25:45Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
偽造検知器の性能は、人間の目で見られる人工物の存在にどのように依存するかを示す。
前例のない品質の顔ビデオ偽造検出のための新しいベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2020-05-20T21:17:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。