論文の概要: A Fast 3D CNN for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2004.14152v1
- Date: Wed, 29 Apr 2020 12:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 14:28:45.521635
- Title: A Fast 3D CNN for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のための高速3次元CNN
- Authors: Muhammad Ahmad
- Abstract要約: ハイパースペクトルイメージング(HSI)は、多くの現実世界の用途に広く利用されている。
2次元畳み込みニューラルネットワーク(CNN)は、HSICがスペクトル空間情報の両方に大きく依存する、実行可能なアプローチである。
本研究は,空間スペクトル特徴写像を併用した3次元CNNモデルを提案する。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imaging (HSI) has been extensively utilized for a number of
real-world applications. HSI classification (HSIC) is a challenging task due to
high inter-class similarity, high intra-class variability, overlapping, and
nested regions. A 2D Convolutional Neural Network (CNN) is a viable approach
whereby HSIC highly depends on both Spectral-Spatial information, therefore, 3D
CNN can be an alternative but highly computational complex due to the volume
and spectral dimensions. Furthermore, these models do not extract quality
feature maps and may underperform over the regions having similar textures.
Therefore, this work proposed a 3D CNN model that utilizes both
spatial-spectral feature maps to attain good performance. In order to achieve
the said performance, the HSI cube is first divided into small overlapping 3D
patches. Later these patches are processed to generate 3D feature maps using a
3D kernel function over multiple contiguous bands that persevere the spectral
information as well. Benchmark HSI datasets (Pavia University, Salinas and
Indian Pines) are considered to validate the performance of our proposed
method. The results are further compared with several state-of-the-art methods.
- Abstract(参考訳): ハイパースペクトルイメージング(HSI)は、多くの現実世界の用途に広く利用されている。
HSI分類(HSIC)は、高いクラス間類似性、高いクラス内変動性、重複、ネストされた領域のために難しい課題である。
2次元畳み込みニューラルネットワーク(CNN)は、HSICがスペクトル空間情報と空間情報の両方に大きく依存しているため、3D CNNは体積とスペクトル次元のため、代替となるが計算量が大きい。
さらに、これらのモデルは質の高い特徴マップを抽出せず、類似したテクスチャを持つ領域で性能が劣る可能性がある。
そこで本研究では,空間スペクトル特徴マップを併用した3次元cnnモデルを提案する。
この性能を達成するために、まずHSI立方体を小さな重なり合う3Dパッチに分割する。
これらのパッチは後に処理され、スペクトル情報を持続する複数の連続帯域上の3Dカーネル関数を使用して3D特徴マップを生成する。
ベンチマークhsiデータセット (pavia university, salinas and indian pines) は,提案手法の性能を検証する。
結果はいくつかの最先端手法と比較される。
関連論文リスト
- Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
ニューラル・ラジアンス・フィールドを使用する手法は、新しいビュー合成のような従来のタスクに汎用的である。
3次元ガウシアンスプラッティングは, 実時間ラディアンス場レンダリングにおける最先端の性能を示した。
この問題を効果的に回避するために,アーキテクチャとトレーニングの変更を提案する。
論文 参考訳(メタデータ) (2023-12-06T00:46:30Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - Sharpend Cosine Similarity based Neural Network for Hyperspectral Image
Classification [0.456877715768796]
ハイパースペクトル画像分類(HSIC)は、高いクラス間類似度と変動性、ネスト領域、重なり合いのため難しい課題である。
2D畳み込みニューラルネットワーク(CNN)は有効なネットワークとして登場したが、3D CNNは正確な分類のため、より良い代替手段である。
本稿では,HSICのためのニューラルネットワークにおける畳み込みの代替として,SCS(Sharpened Cosine similarity)の概念を紹介する。
論文 参考訳(メタデータ) (2023-05-26T07:04:00Z) - Mesh Convolution with Continuous Filters for 3D Surface Parsing [101.25796935464648]
本稿では、3次元トライアングルメッシュから効果的な幾何学的特徴学習のための一連のモジュラー演算を提案する。
メッシュ畳み込みは球面調和を正規直交基底として利用し、連続畳み込みフィルタを生成する。
さらに,PicassoNet++という3次元表面の知覚解析のための新しい階層型ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-03T09:16:49Z) - SpectralNET: Exploring Spatial-Spectral WaveletCNN for Hyperspectral
Image Classification [0.0]
畳み込みニューラルネットワーク(CNN)を用いたハイパースペクトル画像(HSI)分類は,現在の文献に広く見られる。
マルチ解像度HSI分類のための2次元CNNのバリエーションであるウェーブレットCNNであるSpectralNETを提案する。
論文 参考訳(メタデータ) (2021-04-01T08:45:15Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2Dおよび3DCNNモデルは、ハイパースペクトル画像の空間的およびスペクトル情報を利用するのに非常に効率的であることが証明されている。
この研究は、計算コストを大幅に削減する軽量CNN(3Dと2D-CNN)モデルを提案した。
論文 参考訳(メタデータ) (2021-01-25T18:43:57Z) - 3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral
Image Classification [5.727964191623458]
ハイパースペクトル画像はスペクトルと空間情報を豊富に含み、土地被覆分類において不定の役割を果たす。
近年,ディープラーニング技術に基づいて,有望な性能を示すHSI分類手法が提案されている。
1)ほとんどのディープラーニングモデルのアーキテクチャは手作業で設計されており、専門知識に依存しており、比較的退屈である。
論文 参考訳(メタデータ) (2021-01-12T04:15:40Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
限定サンプルに基づくHSI分類のためのエンドツーエンドの3次元軽量畳み込みニューラルネットワーク(CNN)を提案する。
従来の3D-CNNモデルと比較して,提案した3D-LWNetはネットワーク構造が深く,パラメータが小さく,計算コストも低い。
本モデルでは,HSI分類の競合性能を,いくつかの最先端手法と比較した。
論文 参考訳(メタデータ) (2020-12-07T03:44:35Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。