論文の概要: Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context
- arxiv url: http://arxiv.org/abs/2004.14251v1
- Date: Wed, 29 Apr 2020 14:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 14:28:28.719908
- Title: Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context
- Title(参考訳): 地図と社会的コンテキストを用いた都市環境における車両の行動系列予測
- Authors: Jan-Nico Zaech, Dengxin Dai, Alexander Liniger, Luc Van Gool
- Abstract要約: 本研究は、現実の運転シナリオにおける周辺車両の今後の行動の順序を予測する問題について研究する。
最初のコントリビューションは、現実世界の運転シナリオに記録された軌跡をHDマップの助けを借りてアクションシーケンスに変換する自動手法である。
第2のコントリビューションは、よく知られたトラフィックエージェント追跡と予測データセットArgoverseへのメソッドの適用であり、結果として228,000のアクションシーケンスが生成される。
第3のコントリビューションは,交通エージェント,地図情報,社会状況の過去の位置と速度を,単一エンドツーエンドのトレーニング可能なニューラルネットワークに統合して,新たな行動シーケンス予測手法を提案することである。
- 参考スコア(独自算出の注目度): 152.0714518512966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the problem of predicting the sequence of future actions
for surround vehicles in real-world driving scenarios. To this aim, we make
three main contributions. The first contribution is an automatic method to
convert the trajectories recorded in real-world driving scenarios to action
sequences with the help of HD maps. The method enables automatic dataset
creation for this task from large-scale driving data. Our second contribution
lies in applying the method to the well-known traffic agent tracking and
prediction dataset Argoverse, resulting in 228,000 action sequences.
Additionally, 2,245 action sequences were manually annotated for testing. The
third contribution is to propose a novel action sequence prediction method by
integrating past positions and velocities of the traffic agents, map
information and social context into a single end-to-end trainable neural
network. Our experiments prove the merit of the data creation method and the
value of the created dataset - prediction performance improves consistently
with the size of the dataset and shows that our action prediction method
outperforms comparing models.
- Abstract(参考訳): 本研究は、実世界の運転シナリオにおける周辺車両の将来の行動の系列予測の問題を研究するものである。
この目的のために、私たちは3つの主要な貢献をします。
最初の貢献は、現実世界の運転シナリオに記録された軌跡をHDマップの助けを借りてアクションシーケンスに変換する自動手法である。
この方法は大規模運転データからこのタスクの自動データセット作成を可能にする。
2つめの貢献は、よく知られたトラヒックエージェントの追跡と予測データセットargoverseに適用し、228,000のアクションシーケンスを生成することです。
さらに、2,245のアクションシーケンスが手動でアノテートされた。
第3のコントリビューションは,交通エージェント,地図情報,社会状況の過去の位置と速度を,単一エンドツーエンドのトレーニング可能なニューラルネットワークに統合して,新たな行動シーケンス予測手法を提案することである。
本実験は,データ生成法と生成したデータセットの値のメリットを実証する。予測性能はデータセットのサイズと一貫して向上し,提案手法が比較モデルを上回ることを示す。
関連論文リスト
- Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
既存の手法では、2秒以上の一定期間の観測がなければ、車両の予測を開始することはできない。
本稿では,1フレーム以上の観測長を扱うために特別に訓練されたトランスフォーマーを用いた軌道予測手法を提案する。
2つの大規模高速道路軌道データセットを用いて提案手法の総合評価を行う。
論文 参考訳(メタデータ) (2023-06-08T18:03:48Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
自動運転車は、歩行者の短期的かつ即時的な行動をリアルタイムで予測する能力を持つことが重要である。
本研究では,歩行者行動と軌跡予測のために,トランスフォーマーエンコーダデコーダ (TF-ed) アーキテクチャを用いた新しいマルチタスクシーケンスを提案する。
提案手法は,既存のLSTMエンコーダデコーダ (LSTM-ed) アーキテクチャを用いて動作と軌道予測を行う。
論文 参考訳(メタデータ) (2023-05-22T14:03:38Z) - Action-based Contrastive Learning for Trajectory Prediction [4.675212251005813]
軌道予測は、自律運転など、人間のロボットのインタラクションを成功させる上で不可欠なタスクである。
本研究では,移動カメラを用いたファースト・パーソン・ビュー・セッティングにおける将来の歩行者軌跡予測の問題に対処する。
本稿では,歩行者行動情報を利用して学習軌跡埋め込みを改善する,新たな行動に基づくコントラスト学習損失を提案する。
論文 参考訳(メタデータ) (2022-07-18T15:02:27Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
本稿では,自動走行のための新しい学習型マルチモーダル軌道予測アーキテクチャを提案する。
学習問題を加速度と操舵角の空間に投入することにより、運動論的に実現可能な予測を実現する。
提案手法は,都市交差点とラウンドアバウトを含む実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-21T08:27:56Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction
in 3D [10.580548257913843]
nuScenesにフレーム毎の2D/3Dバウンディングボックスと動作アノテーションを追加して作成された新しい歩行者行動予測データセットを提案する。
また,歩行者横断行動予測のための様々なデータモダリティを組み込んだハイブリッドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-14T18:13:44Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。