論文の概要: Learning Pedestrian Actions to Ensure Safe Autonomous Driving
- arxiv url: http://arxiv.org/abs/2305.13051v1
- Date: Mon, 22 May 2023 14:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 15:34:27.726927
- Title: Learning Pedestrian Actions to Ensure Safe Autonomous Driving
- Title(参考訳): 安全な自動運転を保証するための歩行者行動の学習
- Authors: Jia Huang, Alvika Gautam, Srikanth Saripalli
- Abstract要約: 自動運転車は、歩行者の短期的かつ即時的な行動をリアルタイムで予測する能力を持つことが重要である。
本研究では,歩行者行動と軌跡予測のために,トランスフォーマーエンコーダデコーダ (TF-ed) アーキテクチャを用いた新しいマルチタスクシーケンスを提案する。
提案手法は,既存のLSTMエンコーダデコーダ (LSTM-ed) アーキテクチャを用いて動作と軌道予測を行う。
- 参考スコア(独自算出の注目度): 12.440017892152417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure safe autonomous driving in urban environments with complex
vehicle-pedestrian interactions, it is critical for Autonomous Vehicles (AVs)
to have the ability to predict pedestrians' short-term and immediate actions in
real-time. In recent years, various methods have been developed to study
estimating pedestrian behaviors for autonomous driving scenarios, but there is
a lack of clear definitions for pedestrian behaviors. In this work, the
literature gaps are investigated and a taxonomy is presented for pedestrian
behavior characterization. Further, a novel multi-task sequence to sequence
Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian
action and trajectory prediction using only ego vehicle camera observations as
inputs. The proposed approach is compared against an existing LSTM encoders
decoders (LSTM-ed) architecture for action and trajectory prediction. The
performance of both models is evaluated on the publicly available Joint
Attention Autonomous Driving (JAAD) dataset, CARLA simulation data as well as
real-time self-driving shuttle data collected on university campus. Evaluation
results illustrate that the proposed method reaches an accuracy of 81% on
action prediction task on JAAD testing data and outperforms the LSTM-ed by
7.4%, while LSTM counterpart performs much better on trajectory prediction task
for a prediction sequence length of 25 frames.
- Abstract(参考訳): 複雑な車両と歩行者の相互作用を伴う都市環境における安全な自動運転を確保するためには、歩行者の短期的かつ即時的な行動をリアルタイムで予測する能力を持つ自律走行車(AV)が不可欠である。
近年,自律走行シナリオに対する歩行者行動推定手法が開発されているが,歩行者行動に対する明確な定義が欠如している。
本研究は, 文学的ギャップを調査し, 歩行者行動評価のための分類法を提示する。
さらに,車載カメラ観測のみを入力として,歩行者行動と軌跡予測のために,トランスフォーマーエンコーダデコーダ(TF-ed)アーキテクチャの新規なマルチタスクシーケンスを提案する。
提案手法は,既存のLSTMエンコーダデコーダ (LSTM-ed) アーキテクチャを用いて動作と軌道予測を行う。
両モデルの性能は、大学キャンパスで収集されたリアルタイム自動運転シャトルデータと同様に、jaad(joint attention autonomous driving)データセット、carlaシミュレーションデータで評価される。
評価結果から,提案手法は,JAAD試験データ上での動作予測タスクにおいて81%の精度に達し,LSTMを7.4%向上させる一方,LSTMは25フレームの予測シーケンス長に対して,軌道予測タスクにおいてはるかに優れていた。
関連論文リスト
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space [3.487370856323828]
本研究は,モデルフリーDRLアルゴリズムのトレーニングにおいて,予測歩行者状態の不確かさを取り入れた統合予測と計画手法を導入する。
新たな報酬関数により、AVは歩行者の個人的な空間を尊重し、接近中の速度を減少させ、予測された経路との衝突確率を最小化する。
その結果, 衝突速度は40%減少し, 予測の不確実性を考慮しない技術モデルと比較すると, 歩行者との距離は15%増加した。
論文 参考訳(メタデータ) (2024-05-22T20:09:21Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
本研究は、現実の運転シナリオにおける周辺車両の今後の行動の順序を予測する問題について研究する。
最初のコントリビューションは、現実世界の運転シナリオに記録された軌跡をHDマップの助けを借りてアクションシーケンスに変換する自動手法である。
第2のコントリビューションは、よく知られたトラフィックエージェント追跡と予測データセットArgoverseへのメソッドの適用であり、結果として228,000のアクションシーケンスが生成される。
第3のコントリビューションは,交通エージェント,地図情報,社会状況の過去の位置と速度を,単一エンドツーエンドのトレーニング可能なニューラルネットワークに統合して,新たな行動シーケンス予測手法を提案することである。
論文 参考訳(メタデータ) (2020-04-29T14:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。