Deep Learning for Material Decomposition in Photon-Counting CT
- URL: http://arxiv.org/abs/2208.03360v1
- Date: Fri, 5 Aug 2022 19:05:16 GMT
- Title: Deep Learning for Material Decomposition in Photon-Counting CT
- Authors: Alma Eguizabal, Ozan \"Oktem, Mats U. Persson
- Abstract summary: We present a novel deep-learning solution for material decomposition in PCCT, based on an unrolled/unfolded iterative network.
Our approach outperforms a maximum likelihood estimation, a variational method, as well as a fully-learned network.
- Score: 0.5801044612920815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Photon-counting CT (PCCT) offers improved diagnostic performance through
better spatial and energy resolution, but developing high-quality image
reconstruction methods that can deal with these large datasets is challenging.
Model-based solutions incorporate models of the physical acquisition in order
to reconstruct more accurate images, but are dependent on an accurate forward
operator and present difficulties with finding good regularization. Another
approach is deep-learning reconstruction, which has shown great promise in CT.
However, fully data-driven solutions typically need large amounts of training
data and lack interpretability. To combine the benefits of both methods, while
minimizing their respective drawbacks, it is desirable to develop
reconstruction algorithms that combine both model-based and data-driven
approaches. In this work, we present a novel deep-learning solution for
material decomposition in PCCT, based on an unrolled/unfolded iterative
network. We evaluate two cases: a learned post-processing, which implicitly
utilizes model knowledge, and a learned gradient-descent, which has explicit
model-based components in the architecture. With our proposed techniques, we
solve a challenging PCCT simulation case: three-material decomposition in
abdomen imaging with low dose, iodine contrast, and a very small training
sample support. In this scenario, our approach outperforms a maximum likelihood
estimation, a variational method, as well as a fully-learned network.
Related papers
- Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation [4.43162303545687]
Deep learning-based Generative Models have the potential to convert low-resolution CT images into high-resolution counterparts without long acquisition times and increased radiation exposure in thin-slice CT imaging.
procuring appropriate training data for these Super-Resolution (SR) models is challenging.
Previous SR research has simulated thick-slice CT images from thin-slice CT images to create training pairs.
We introduce a simple yet realistic method to generate thick CT images from thin-slice CT images, facilitating the creation of training pairs for SR algorithms.
arXiv Detail & Related papers (2023-07-02T11:09:08Z) - Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography [31.774432128324385]
We propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV sinogram.
Compared with recent related works that solve similar problems using implicit neural representation network (INR), our essential contribution is an effective and simple re-projection strategy.
arXiv Detail & Related papers (2022-09-12T06:14:04Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.