論文の概要: Online unsupervised deep unfolding for MIMO channel estimation
- arxiv url: http://arxiv.org/abs/2004.14615v4
- Date: Thu, 27 May 2021 07:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 05:16:29.720952
- Title: Online unsupervised deep unfolding for MIMO channel estimation
- Title(参考訳): mimoチャネル推定のためのunsupervised deep unfolding
- Authors: Luc Le Magoarou (IRT b-com), St\'ephane Paquelet (IRT b-com)
- Abstract要約: チャネル推定のためのオンライン学習を大規模に行うことを提案する。
これにより、不完全なモデルでオンラインにトレーニングできる計算効率のよいニューラルネットワークが実現される。
現実的なチャネルに適用され、優れた性能を示し、完全に校正されたシステムで得られるチャネル推定誤差をほぼ低くする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Channel estimation is a difficult problem in MIMO systems. Using a physical
model allows to ease the problem, injecting a priori information based on the
physics of propagation. However, such models rest on simplifying assumptions
and require to know precisely the system configuration, which is unrealistic.In
this paper, we propose to perform online learning for channel estimation in a
massive MIMO context, adding flexibility to physical models by unfolding a
channel estimation algorithm (matching pursuit) as a neural network. This leads
to a computationally efficient neural network that can be trained online when
initialized with an imperfect model. The method allows a base station to
automatically correct its channel estimation algorithm based on incoming data,
without the need for a separate offline training phase.It is applied to
realistic channels and shows great performance, achieving channel estimation
error almost as low as one would get with a perfectly calibrated system.
- Abstract(参考訳): チャネル推定はMIMOシステムでは難しい問題である。
物理モデルを使用することで問題を緩和し、伝播の物理に基づく事前情報を注入することができる。
しかし,このようなモデルは仮定を単純化し,非現実的なシステム構成を正確に把握する必要がある。本稿では,大規模mimoコンテキストにおけるチャネル推定のためのオンライン学習を行い,チャネル推定アルゴリズム(マッチング追跡)をニューラルネットワークとして展開することにより,物理モデルに柔軟性を加えることを提案する。
これにより、不完全なモデルで初期化されると、オンラインでトレーニングできる計算効率のよいニューラルネットワークが実現される。
この手法により、基地局は、個別のオフライントレーニングフェーズを必要とせずに、受信データに基づくチャネル推定アルゴリズムを自動的に修正することができ、リアルなチャネルに適用され、優れた性能を示し、完全に校正されたシステムで得られるのとほぼ同等の精度でチャネル推定エラーを発生させることができる。
関連論文リスト
- Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Efficient Deep Unfolding for SISO-OFDM Channel Estimation [0.0]
スパースリカバリ技術を用いてSISO-OFDMチャネル推定を行うことができる。
本稿では,この制約を緩和するために,展開ニューラルネットワークを用いる。
教師なしのオンライン学習は、推定性能を高めるためにシステムの欠陥を学習することができる。
論文 参考訳(メタデータ) (2022-10-11T11:29:54Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
従来の線形最小平均二乗誤差(LMMSE)アーキテクチャ上に構築したML強化MU-MIMO受信機を提案する。
cnnはチャネル推定誤差の2次統計量の近似を計算するために用いられる。
CNNベースのデマッパーは、多数の周波数分割多重記号とサブキャリアを共同で処理する。
論文 参考訳(メタデータ) (2020-12-15T09:55:37Z) - Federated Learning for Channel Estimation in Conventional and
RIS-Assisted Massive MIMO [12.487990897680422]
機械学習によるチャネル推定では、通常、受信したパイロット信号を入力として、チャネルデータを出力として含むデータセットのモデルトレーニングが必要となる。
以前の研究では、モデルトレーニングは主に中央集権学習(CL)を通じて行われ、トレーニングデータセット全体がベースステーション(BS)のユーザから収集される。
チャネル推定のためのフェデレートラーニング(FL)フレームワークを提案する。BSに送信することなく、ユーザのローカルデータセットに基づいてトレーニングされた畳み込みニューラルネットワーク(CNN)を設計する。
雑音および量子化モデル伝送の性能評価を行い,提案手法がCLの約16倍のオーバヘッドを提供することを示す。
論文 参考訳(メタデータ) (2020-08-25T06:51:18Z) - mpNet: variable depth unfolded neural network for massive MIMO channel
estimation [0.0]
データレートとエネルギー効率の両面で、MIMO(Multiple-input multiple-output)通信システムは大きな可能性を秘めている。
物理モデルを使用することで、伝播の物理に基づいて事前情報を注入することで、問題を緩和することができる。
しかし、そのようなモデルは仮定の単純化に頼っており、実際には非現実的なシステムの構成を正確に知る必要がある。
論文 参考訳(メタデータ) (2020-08-07T12:23:44Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。