Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-Based Robot Navigation
- URL: http://arxiv.org/abs/2004.14684v1
- Date: Thu, 30 Apr 2020 10:47:02 GMT
- Title: Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-Based Robot Navigation
- Authors: Thomas Chaffre, Julien Moras, Adrien Chan-Hon-Tong, Julien Marzat
- Abstract summary: Soft-Actor Critic (SAC) training strategy using incremental environment complexity is proposed to drastically reduce the need for additional training in the real world.
The application addressed is depth-based mapless navigation, where a mobile robot should reach a given waypoint in a cluttered environment with no prior mapping information.
- Score: 1.290382979353427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transferring learning-based models to the real world remains one of the
hardest problems in model-free control theory. Due to the cost of data
collection on a real robot and the limited sample efficiency of Deep
Reinforcement Learning algorithms, models are usually trained in a simulator
which theoretically provides an infinite amount of data. Despite offering
unbounded trial and error runs, the reality gap between simulation and the
physical world brings little guarantee about the policy behavior in real
operation. Depending on the problem, expensive real fine-tuning and/or a
complex domain randomization strategy may be required to produce a relevant
policy. In this paper, a Soft-Actor Critic (SAC) training strategy using
incremental environment complexity is proposed to drastically reduce the need
for additional training in the real world. The application addressed is
depth-based mapless navigation, where a mobile robot should reach a given
waypoint in a cluttered environment with no prior mapping information.
Experimental results in simulated and real environments are presented to assess
quantitatively the efficiency of the proposed approach, which demonstrated a
success rate twice higher than a naive strategy.
Related papers
- LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots [20.715834172041763]
We propose a lifelong policy adaptation framework named LoopSR.
It reconstructs the real-world environments back in simulation for further improvement.
By leveraging the continual training, LoopSR achieves superior data efficiency compared with strong baselines.
arXiv Detail & Related papers (2024-09-26T16:02:25Z) - Sim-to-Real Transfer of Deep Reinforcement Learning Agents for Online Coverage Path Planning [15.792914346054502]
We tackle the challenge of sim-to-real transfer of reinforcement learning (RL) agents for coverage path planning ( CPP)
We bridge the sim-to-real gap through a semi-virtual environment, including a real robot and real-time aspects, while utilizing a simulated sensor and obstacles.
We find that a high inference frequency allows first-order Markovian policies to transfer directly from simulation, while higher-order policies can be fine-tuned to further reduce the sim-to-real gap.
arXiv Detail & Related papers (2024-06-07T13:24:19Z) - Efficient Imitation Learning with Conservative World Models [54.52140201148341]
We tackle the problem of policy learning from expert demonstrations without a reward function.
We re-frame imitation learning as a fine-tuning problem, rather than a pure reinforcement learning one.
arXiv Detail & Related papers (2024-05-21T20:53:18Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - ASID: Active Exploration for System Identification in Robotic Manipulation [32.27299045059514]
We propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy.
We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks.
arXiv Detail & Related papers (2024-04-18T16:35:38Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Zero-shot Sim2Real Adaptation Across Environments [45.44896435487879]
We propose a Reverse Action Transformation (RAT) policy which learns to imitate simulated policies in the real-world.
RAT can then be deployed on top of a Universal Policy Network to achieve zero-shot adaptation to new environments.
arXiv Detail & Related papers (2023-02-08T11:59:07Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.