SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
- URL: http://arxiv.org/abs/2505.16834v2
- Date: Sun, 25 May 2025 16:02:29 GMT
- Title: SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
- Authors: Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia Deng, Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen,
- Abstract summary: Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios.<n>Existing approaches face critical limitations that lack high-quality training trajectories and suffer from distributional mismatches.<n>This paper introduces SimpleDeepSearcher, a framework that bridges the gap through strategic data engineering rather than complex training paradigms.
- Score: 89.99161034065614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
Related papers
- DynaSearcher: Dynamic Knowledge Graph Augmented Search Agent via Multi-Reward Reinforcement Learning [4.817888539036794]
DynaSearcher is an innovative search agent enhanced by dynamic knowledge graphs and multi-reward reinforcement learning (RL)<n>We employ a multi-reward RL framework for fine-grained control over training objectives such as retrieval accuracy, efficiency, and response quality.<n> Experimental results demonstrate that our approach achieves state-of-the-art answer accuracy on six multi-hop question answering datasets.
arXiv Detail & Related papers (2025-07-23T09:58:31Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
We present a new benchmark for evaluating a form of retrieval-augmented generation (RAG)<n>RAG requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources.<n>We build it using a synthetic data pipeline that simulates business across product planning, development, and support stages.
arXiv Detail & Related papers (2025-06-29T08:34:59Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
We introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents.<n>Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web.<n>Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines.
arXiv Detail & Related papers (2025-04-04T04:41:28Z) - Scalable Offline Reinforcement Learning for Mean Field Games [6.8267158622784745]
Off-MMD is a novel mean-field RL algorithm that approximates equilibrium policies in mean-field games using purely offline data.
Our algorithm scales to complex environments and demonstrates strong performance on benchmark tasks like crowd exploration or navigation.
arXiv Detail & Related papers (2024-10-23T14:16:34Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Automating DBSCAN via Deep Reinforcement Learning [73.82740568765279]
We propose a novel Deep Reinforcement Learning guided automatic DBSCAN parameters search framework, namely DRL-DBSCAN.
The framework models the process of adjusting the parameter search direction by perceiving the clustering environment as a Markov decision process.
The framework consistently improves DBSCAN clustering accuracy by up to 26% and 25% respectively.
arXiv Detail & Related papers (2022-08-09T04:40:11Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
arXiv Detail & Related papers (2022-01-26T20:43:13Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-Based Robot Navigation [1.290382979353427]
Soft-Actor Critic (SAC) training strategy using incremental environment complexity is proposed to drastically reduce the need for additional training in the real world.
The application addressed is depth-based mapless navigation, where a mobile robot should reach a given waypoint in a cluttered environment with no prior mapping information.
arXiv Detail & Related papers (2020-04-30T10:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.