Self-Supervised and Controlled Multi-Document Opinion Summarization
- URL: http://arxiv.org/abs/2004.14754v2
- Date: Fri, 1 May 2020 00:26:52 GMT
- Title: Self-Supervised and Controlled Multi-Document Opinion Summarization
- Authors: Hady Elsahar, Maximin Coavoux, Matthias Gall\'e, Jos Rozen
- Abstract summary: We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents.
We address the problem of hallucinations through the use of control codes.
Our benchmarks on two datasets against graph-based and recent neural abstractive unsupervised models show that our proposed method generates summaries with a superior quality and relevance.
- Score: 16.674646504295687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We address the problem of unsupervised abstractive summarization of
collections of user generated reviews with self-supervision and control. We
propose a self-supervised setup that considers an individual document as a
target summary for a set of similar documents. This setting makes training
simpler than previous approaches by relying only on standard log-likelihood
loss. We address the problem of hallucinations through the use of control
codes, to steer the generation towards more coherent and relevant
summaries.Finally, we extend the Transformer architecture to allow for multiple
reviews as input. Our benchmarks on two datasets against graph-based and recent
neural abstractive unsupervised models show that our proposed method generates
summaries with a superior quality and relevance.This is confirmed in our human
evaluation which focuses explicitly on the faithfulness of generated summaries
We also provide an ablation study, which shows the importance of the control
setup in controlling hallucinations and achieve high sentiment and topic
alignment of the summaries with the input reviews.
Related papers
- SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
We propose SummIt, an iterative text summarization framework based on large language models like ChatGPT.
Our framework enables the model to refine the generated summary iteratively through self-evaluation and feedback.
We also conduct a human evaluation to validate the effectiveness of the iterative refinements and identify a potential issue of over-correction.
arXiv Detail & Related papers (2023-05-24T07:40:06Z) - Improving the Faithfulness of Abstractive Summarization via Entity
Coverage Control [27.214742188672464]
We propose a method to remedy entity-level hallucinations with Entity Coverage Control (ECC)
ECC computes entity coverage precision and prepend the corresponding control code for each training example.
We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings.
arXiv Detail & Related papers (2022-07-05T18:52:19Z) - EntSUM: A Data Set for Entity-Centric Summarization [27.845014142019917]
Controllable summarization aims to provide summaries that take into account user-specified aspects and preferences.
We introduce a human-annotated data setSUM for controllable summarization with a focus on named entities as the aspects to control.
arXiv Detail & Related papers (2022-04-05T13:45:54Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
We propose the first unsupervised multi-granularity summarization framework, GranuSum.
By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner.
arXiv Detail & Related papers (2022-01-29T05:56:35Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
We propose an approach that allows the generation of customized summaries based on aspect queries.
Using a review corpus, we create a synthetic training dataset of (review, summary) pairs enriched with aspect controllers.
We fine-tune a pretrained model using our synthetic dataset and generate aspect-specific summaries by modifying the aspect controllers.
arXiv Detail & Related papers (2021-09-07T16:09:17Z) - Controllable Abstractive Dialogue Summarization with Sketch Supervision [56.59357883827276]
Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score.
arXiv Detail & Related papers (2021-05-28T19:05:36Z) - CTRLsum: Towards Generic Controllable Text Summarization [54.69190421411766]
We presentsum, a novel framework for controllable summarization.
Our approach enables users to control multiple aspects of generated summaries by interacting with the summarization system.
Using a single unified model,sum is able to achieve a broad scope of summary manipulation at inference time.
arXiv Detail & Related papers (2020-12-08T08:54:36Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof.
At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise.
arXiv Detail & Related papers (2020-04-21T16:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.