A new approach to the construction of Schur-Weyl states
- URL: http://arxiv.org/abs/2004.14799v2
- Date: Tue, 2 Mar 2021 16:12:35 GMT
- Title: A new approach to the construction of Schur-Weyl states
- Authors: Micha{\l} Kaczor and Pawe{\l} Jakubczyk
- Abstract summary: The Schur-Weyl states belong to a special class of states with a symmetry described by two Young and Weyl tableaux.
We present a new method of Schur-Weyl states construction in a spin chain system representation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Schur-Weyl states belong to a special class of states with a symmetry
described by two Young and Weyl tableaux. Representation of physical systems in
Hilbert space spanned on these states enables to extract quantum information
hidden in nonlocal degrees of freedom. Such property can be very useful in a
broad range of problems in Quantum Computations, especially in quantum
algorithms constructions, therefore it is very important to know exact form of
these states. Moreover, they allow to reduce significantly the size of
eigenproblem, or in general, diminishing the representation matrix of any
physical quantities, represented in the symmetric or unitary group algebra.
Here we present a new method of Schur-Weyl states construction in a spin chain
system representation. Our approach is based on the fundamental shift operators
out of which one can build Clebsch-Gordan coefficients for the unitary group
U(n) and then derive appropriate Schur-Weyl state probability amplitudes.
Related papers
- Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Studying Stabilizer de Finetti Theorems and Possible Applications in Quantum Information Processing [0.0]
In quantum information theory, if a quantum state is invariant under permutations of its subsystems, its marginal can be approximated by a mixture of powers of a state on a single subsystem.
Recently, it has been discovered that a similar observation can be made for a larger symmetry group than permutations.
This naturally raises the question if similar improvements could be found for applications where this symmetry appears.
arXiv Detail & Related papers (2024-03-15T17:55:12Z) - Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum spin systems and fermionic models.
We focus on transitioning these states from the conventional computational (sigmaz) basis to more complex bases, such as (phi, fracpi2, alpha)
We present a novel algorithm that not only simplifies the basis transformation but also reduces computational complexity.
arXiv Detail & Related papers (2024-03-05T19:43:33Z) - Local unitary equivalence of arbitrary-dimensional multipartite quantum
states [19.34942152423892]
Local unitary equivalence is an ingredient for quantifying and classifying entanglement.
We find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum states.
We apply these invariants to estimate concurrence, a vital entanglement measure.
arXiv Detail & Related papers (2024-02-21T02:57:46Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Automated detection of symmetry-protected subspaces in quantum
simulations [0.0]
We introduce two classical algorithms, which efficiently compute and elucidate features of symmetry-protected subspaces.
These algorithms lend themselves to the post-selection of quantum computer data, optimized classical simulation of quantum systems, and the discovery of previously hidden symmetries in quantum mechanical systems.
arXiv Detail & Related papers (2023-02-16T21:17:48Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Stationary State Degeneracy of Open Quantum Systems with Non-Abelian
Symmetries [3.423206565777368]
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries.
We apply these results within the context of open quantum many-body systems.
We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated.
arXiv Detail & Related papers (2019-12-27T15:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.