論文の概要: Modelling Suspense in Short Stories as Uncertainty Reduction over Neural
Representation
- arxiv url: http://arxiv.org/abs/2004.14905v1
- Date: Thu, 30 Apr 2020 16:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 03:14:01.052449
- Title: Modelling Suspense in Short Stories as Uncertainty Reduction over Neural
Representation
- Title(参考訳): 短い物語におけるサスペンスのモデル化 : 神経表現に対する不確実性低減
- Authors: David Wilmot and Frank Keller
- Abstract要約: サスペンスは物語小説の重要な要素であり、読者を惹きつけ、説得力のある物語を作る。
サスペンスをモデル化する2つの方法を比較する。サプライズ、現在の状況がどれだけ予期せぬものであるかの逆向きの尺度、不確実性低減、ストーリーの継続がどれだけ予期せぬかの前方方向の尺度である。
本稿では,物語を符号化し,サプライズと不確実性を低減する階層型言語モデルを提案する。
- 参考スコア(独自算出の注目度): 17.683705809784453
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Suspense is a crucial ingredient of narrative fiction, engaging readers and
making stories compelling. While there is a vast theoretical literature on
suspense, it is computationally not well understood. We compare two ways for
modelling suspense: surprise, a backward-looking measure of how unexpected the
current state is given the story so far; and uncertainty reduction, a
forward-looking measure of how unexpected the continuation of the story is.
Both can be computed either directly over story representations or over their
probability distributions. We propose a hierarchical language model that
encodes stories and computes surprise and uncertainty reduction. Evaluating
against short stories annotated with human suspense judgements, we find that
uncertainty reduction over representations is the best predictor, resulting in
near-human accuracy. We also show that uncertainty reduction can be used to
predict suspenseful events in movie synopses.
- Abstract(参考訳): サスペンスは物語小説の重要な要素であり、読者を惹きつけ、物語を魅力的にする。
サスペンスに関する膨大な理論文献があるが、計算学的にはよく分かっていない。
サスペンスをモデル化する2つの方法を比較する。サプライズ、現在の状況がどれだけ予期せぬものであるかの逆向きの尺度、不確実性低減、ストーリーの継続がどれだけ予期せぬかの前方方向の尺度である。
どちらもストーリー表現で直接計算するか、確率分布で計算することができる。
我々は,ストーリーをエンコードし,驚きと不確実性を低減する階層型言語モデルを提案する。
ヒトのサスペンス判断に注釈が付された短いストーリーに対して評価すると、表現に対する不確かさの低減が最良の予測要因であり、人間に近い精度をもたらすことが分かる。
また,映画合成におけるサスペンスイベントの予測には不確実性低減が有効であることを示す。
関連論文リスト
- Creating Suspenseful Stories: Iterative Planning with Large Language
Models [2.6923151107804055]
本稿では,ストーリー・サスペンスの2つの理論的基礎に根ざした,反復型提案型計画手法を提案する。
本論文は,我々の知る限りでは,大規模言語モデルを用いたサスペンスな物語生成の試みである。
論文 参考訳(メタデータ) (2024-02-27T01:25:52Z) - Predicting Emergent Abilities with Infinite Resolution Evaluation [85.89911520190711]
本稿では,デコードフェーズにおける大規模なサンプリングを通じて,理論的に無限の分解能を持つ評価戦略であるPassUntilを紹介する。
トレーニング開始前に0.05%の偏差でコード生成における2.4Bモデルの性能を予測する。
スケーリング曲線が標準スケーリング法則関数に適合できないような,高速化された出現の種を同定する。
論文 参考訳(メタデータ) (2023-10-05T02:35:00Z) - Neural Story Planning [8.600049807193413]
本稿では,ニューラル言語モデルと因果計画を統合したストーリープロット生成手法を提案する。
我々のシステムは、物語における出来事の前提条件を推測し、その条件が真実になるイベントを推定する。
その結果,提案手法は複数の強基線よりもコヒーレントなプロットラインを生成することがわかった。
論文 参考訳(メタデータ) (2022-12-16T21:29:41Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
モデルが生成中の幻覚コンテンツにより多くの確率を割り当てる可能性が著しく高いという単純な基準を見いだす。
この発見は幻覚の潜在的な説明を提供する:モデルは、継続について不確実な場合には、高い限界確率のテキストを好むことをデフォルトとする。
そこで本研究では,ターゲットトークンの正当性ではなく,ソースとターゲットトークンのポイントワイドな相互情報の最適化に切り替える復号手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T13:30:54Z) - PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of
Continuous Prompts [99.03864962014431]
目標タスクの微調整連続プロンプトは、フルモデルの微調整に代わるコンパクトな代替品として登場した。
実際には、連続的なプロンプトによって解決されたタスクと、最も近い隣人との間の「方向」の挙動を観察する。
論文 参考訳(メタデータ) (2021-12-15T18:55:05Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Counterfactual Evaluation for Explainable AI [21.055319253405603]
そこで本稿では, 文献的推論の観点から, 説明の忠実さを評価する新しい手法を提案する。
離散シナリオと連続シナリオの両方において適切な反事実を見つけるために2つのアルゴリズムを導入し、取得した反事実を用いて忠実度を測定する。
論文 参考訳(メタデータ) (2021-09-05T01:38:49Z) - Temporal Reasoning on Implicit Events from Distant Supervision [91.20159064951487]
本稿では,暗黙的事象の理解度を評価する新しい時間的推論データセットを提案する。
我々は、暗黙の出来事と明示的な出来事の間の時間的関係を予測する際に、最先端のモデルが苦労していることを発見した。
本稿では,大規模テキストからの遠隔監視信号を利用して終末時刻を推定する,ニューロシンボリックな時間的推論モデルSYMTIMEを提案する。
論文 参考訳(メタデータ) (2020-10-24T03:12:27Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Getting a CLUE: A Method for Explaining Uncertainty Estimates [30.367995696223726]
微分可能確率モデルからの不確実性推定を解釈する新しい手法を提案する。
提案手法は,データ多様体上に保持しながら,入力の変更方法を示す。
論文 参考訳(メタデータ) (2020-06-11T21:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。