論文の概要: Understanding Neural Abstractive Summarization Models via Uncertainty
- arxiv url: http://arxiv.org/abs/2010.07882v1
- Date: Thu, 15 Oct 2020 16:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 04:02:04.468383
- Title: Understanding Neural Abstractive Summarization Models via Uncertainty
- Title(参考訳): 不確実性による神経抽象要約モデル理解
- Authors: Jiacheng Xu, Shrey Desai, Greg Durrett
- Abstract要約: seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
- 参考スコア(独自算出の注目度): 54.37665950633147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An advantage of seq2seq abstractive summarization models is that they
generate text in a free-form manner, but this flexibility makes it difficult to
interpret model behavior. In this work, we analyze summarization decoders in
both blackbox and whitebox ways by studying on the entropy, or uncertainty, of
the model's token-level predictions. For two strong pre-trained models, PEGASUS
and BART on two summarization datasets, we find a strong correlation between
low prediction entropy and where the model copies tokens rather than generating
novel text. The decoder's uncertainty also connects to factors like sentence
position and syntactic distance between adjacent pairs of tokens, giving a
sense of what factors make a context particularly selective for the model's
next output token. Finally, we study the relationship of decoder uncertainty
and attention behavior to understand how attention gives rise to these observed
effects in the model. We show that uncertainty is a useful perspective for
analyzing summarization and text generation models more broadly.
- Abstract(参考訳): seq2seq抽象要約モデルの利点は、自由形式でテキストを生成することであるが、この柔軟性はモデルの振る舞いを解釈することが困難である。
本研究では,モデルのトークンレベルの予測のエントロピーや不確実性を研究することにより,ブラックボックスとホワイトボックスの両方の方法で要約デコーダを分析する。
PEGASUS と BART という2つの強力な事前学習モデルに対して,予測エントロピーの低さと,新しいテキストを生成するのではなくトークンをコピーする場所との相関関係が強い。
デコーダの不確実性は、隣接するトークンのペア間の文の位置や構文距離といった要素にもつながり、モデルの次の出力トークンに対して、コンテキストを特に選択的にする要因の感覚を与える。
最後に,デコーダの不確かさと注意行動の関係について検討し,これらの観測結果がモデルに与える影響について考察する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
関連論文リスト
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Towards Improving Faithfulness in Abstractive Summarization [37.19777407790153]
本稿では,抽象的な要約における忠実度を改善するために,FES(Fithfulness Enhanced Summarization Model)を提案する。
我々のモデルはCNN/DMとXSumの実験において強いベースラインを上回ります。
論文 参考訳(メタデータ) (2022-10-04T19:52:09Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
本研究では,事前学習したトランスフォーマーエンコーダをベースとしたニューラルテキスト分類器の解釈の堅牢性を評価する。
どちらのテストも、期待された行動から驚くほど逸脱しており、実践者が解釈から引き出す可能性のある洞察の程度について疑問を呈している。
論文 参考訳(メタデータ) (2021-06-08T18:31:02Z) - Dissecting Generation Modes for Abstractive Summarization Models via
Ablation and Attribution [34.2658286826597]
本稿では,要約モデル決定を解釈する2段階の手法を提案する。
まず、各デコーダ決定を複数の生成モードの1つに分類するために、モデル全体を非難することでモデルの振舞いを解析する。
入力に依存する決定を分離した後、いくつかの異なる帰属法を用いてこれらの決定を解釈する。
論文 参考訳(メタデータ) (2021-06-03T00:54:16Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。