論文の概要: Representations of Syntax [MASK] Useful: Effects of Constituency and
Dependency Structure in Recursive LSTMs
- arxiv url: http://arxiv.org/abs/2005.00019v1
- Date: Thu, 30 Apr 2020 18:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 04:51:57.765530
- Title: Representations of Syntax [MASK] Useful: Effects of Constituency and
Dependency Structure in Recursive LSTMs
- Title(参考訳): 構文 [MASK] の表現が有用である:再帰的LSTMにおける構成と依存構造の影響
- Authors: Michael A. Lepori, Tal Linzen, and R. Thomas McCoy
- Abstract要約: シーケンスベースのニューラルネットワークは、構文構造に対してかなりの感度を示すが、それでも木ベースのネットワークよりも構文上のタスクではうまく機能しない。
これら2つの表現スキームのどちらが構文構造に対するバイアスをより効果的に導入するかを評価する。
選挙区ネットワークは,依存性に基づくネットワークよりも強固に一般化し,これら2種類の構造を組み合わせることで,さらなる改善が得られないことを示す。
- 参考スコア(独自算出の注目度): 26.983602540576275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence-based neural networks show significant sensitivity to syntactic
structure, but they still perform less well on syntactic tasks than tree-based
networks. Such tree-based networks can be provided with a constituency parse, a
dependency parse, or both. We evaluate which of these two representational
schemes more effectively introduces biases for syntactic structure that
increase performance on the subject-verb agreement prediction task. We find
that a constituency-based network generalizes more robustly than a
dependency-based one, and that combining the two types of structure does not
yield further improvement. Finally, we show that the syntactic robustness of
sequential models can be substantially improved by fine-tuning on a small
amount of constructed data, suggesting that data augmentation is a viable
alternative to explicit constituency structure for imparting the syntactic
biases that sequential models are lacking.
- Abstract(参考訳): シーケンスベースのニューラルネットワークは構文構造に対して有意な感度を示すが、ツリーベースのネットワークよりも構文タスクではうまく機能しない。
このようなツリーベースのネットワークは、構成構文解析、依存構文解析、あるいはその両方を提供することができる。
これら2つの表現スキームのどちらがより効果的に構文構造のバイアスを導入し、主観的合意予測タスクの性能を高めるかを評価する。
選挙区ベースネットワークは依存性ベースネットワークよりも強固に一般化し,これら2種類の構造を組み合わせることで更なる改善が得られない。
最後に, 逐次モデルの構文的ロバスト性は, 少量の構築データを微調整することによって著しく向上できることを示し, 逐次モデルに欠落する構文的バイアスを与えるための明示的選挙区構造に代わるデータ拡張が可能であることを示唆する。
関連論文リスト
- S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis [19.740223755240734]
ABSAのための構文強化グラフ構造学習にセグメンテーションを取り入れた2$GSLを提案する。
S$2$GSLはセグメント対応セマンティックグラフ学習と構文ベースの潜在グラフ学習を備えている。
論文 参考訳(メタデータ) (2024-06-05T03:44:35Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Better Feature Integration for Named Entity Recognition [30.676768644145]
両タイプの機能をSynergized-LSTM(Syn-LSTM)に組み込むためのシンプルで堅牢なソリューションを提案する。
その結果、提案モデルが従来のアプローチよりも優れたパフォーマンスを実現し、パラメータを少なくできることが示された。
論文 参考訳(メタデータ) (2021-04-12T09:55:06Z) - Syntactic representation learning for neural network based TTS with
syntactic parse tree traversal [49.05471750563229]
本稿では,構文解析木に基づく構文表現学習手法を提案し,構文構造情報を自動的に活用する。
実験の結果,提案手法の有効性が示された。
複数の構文解析木を持つ文では、合成音声から韻律的差異が明確に認識される。
論文 参考訳(メタデータ) (2020-12-13T05:52:07Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
キーワード抽出(KE)は、ある文書でカバーされている概念やトピックを正確に表現するフレーズの集合を要約することを目的としている。
最近のシークエンス・ツー・シークエンス(Seq2Seq)ベースの生成フレームワークはKEタスクで広く使われ、様々なベンチマークで競合性能を得た。
本稿では,この2つの問題を同時に解くために,動的グラフ畳み込みネットワーク(DGCN)を採用することを提案する。
論文 参考訳(メタデータ) (2020-10-24T08:11:23Z) - High-order Semantic Role Labeling [86.29371274587146]
本稿では,ニューラルセマンティックロールラベリングモデルのための高階グラフ構造を提案する。
これにより、モデルは孤立述語-引数対だけでなく、述語-引数対間の相互作用も明示的に考慮することができる。
CoNLL-2009ベンチマークの7つの言語に対する実験結果から、高次構造学習技術は強力なSRLモデルに有益であることが示された。
論文 参考訳(メタデータ) (2020-10-09T15:33:54Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
我々はマルチタスクの目的、すなわち、モデルが単語を同時に予測し、また「シンタクティック距離」と呼ばれる形態で真実解析木を解析する。
Penn Treebank と Chinese Treebank のデータセットによる実験結果から,地上の真理解析木を追加の訓練信号として提供すると,そのモデルはより低いパープレキシティを実現し,より良い品質で木を誘導できることが示された。
論文 参考訳(メタデータ) (2020-05-12T15:35:00Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
NLVR2およびDROPデータセット上でNMNの中間出力を評価する。
中間出力は期待出力と異なり,ネットワーク構造がモデル動作の忠実な説明を提供していないことを示す。
論文 参考訳(メタデータ) (2020-05-02T06:50:35Z) - Consistency of Spectral Clustering on Hierarchical Stochastic Block
Models [5.983753938303726]
実世界のネットワークにおけるコミュニティの階層構造について,汎用ブロックモデルを用いて検討する。
本手法の強い一貫性を,幅広いモデルパラメータで証明する。
既存のほとんどの研究とは異なり、我々の理論は接続確率が桁違いに異なるかもしれないマルチスケールネットワークをカバーしている。
論文 参考訳(メタデータ) (2020-04-30T01:08:59Z) - Discontinuous Constituent Parsing with Pointer Networks [0.34376560669160383]
不連続な構成木は、ドイツ語のような言語の文法的な現象を表現するのに不可欠である。
係り受け解析の最近の進歩は、ポインタネットワークが文中の単語間の構文関係を効率的に解析することに優れていることを示している。
本稿では,最も正確な不連続な構成表現を生成するニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-05T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。