論文の概要: Hybrid superconductor-semiconductor systems for quantum technology
- arxiv url: http://arxiv.org/abs/2005.00030v1
- Date: Thu, 30 Apr 2020 18:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-21 17:06:07.734803
- Title: Hybrid superconductor-semiconductor systems for quantum technology
- Title(参考訳): 量子技術のためのハイブリッド超伝導・半導体システム
- Authors: M\'onica Benito and Guido Burkard
- Abstract要約: 超伝導量子デバイスは優れた接続性と制御性を提供する。
半導体スピン量子ビットは、長寿命の量子コヒーレンス、高速制御、小型化とスケーリングのポテンシャルで際立っている。
近年、超伝導回路と半導体デバイスをハイブリッド量子システムに結合する研究が進められている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting quantum devices provide excellent connectivity and
controllability while semiconductor spin qubits stand out with their
long-lasting quantum coherence, fast control, and potential for miniaturization
and scaling. In the last few years, remarkable progress has been made in
combining superconducting circuits and semiconducting devices into hybrid
quantum systems that benefit from the physical properties of both constituents.
Superconducting cavities can mediate quantum-coherent coupling over long
distances between electronic degrees of freedom such as the spin of individual
electrons on a semiconductor chip and thus provide essential connectivity for a
quantum device. Electron spins in semiconductor quantum dots have reached very
long coherence times and allow for fast quantum gate operations with increasing
fidelities. We summarize recent progress and theoretical models that describe
superconducting-semiconducting hybrid quantum systems, explain the limitations
of these systems, and describe different directions where future experiments
and theory are headed.
- Abstract(参考訳): 超伝導量子デバイスは優れた接続性と制御性を提供し、半導体スピン量子ビットは長寿命の量子コヒーレンス、高速制御、小型化とスケーリングの可能性に際立つ。
ここ数年、超伝導回路と半導体デバイスを組み合わせたハイブリッド量子システムにおいて、両者の物理的性質の恩恵を受ける顕著な進歩がみられてきた。
超伝導キャビティは、半導体チップ上の個々の電子のスピンのような電子自由度の間の長距離における量子コヒーレント結合を媒介し、量子デバイスに不可欠な接続を提供する。
半導体量子ドット内の電子スピンは、非常に長いコヒーレンス時間に達し、フィダリティを増大させる高速量子ゲート演算を可能にする。
超伝導-半導体ハイブリッド量子系を記述する最近の進歩と理論モデルを要約し、これらのシステムの限界を説明し、将来の実験と理論が進む方向について説明する。
関連論文リスト
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
最近製造された半導体-超伝導-強磁性絶縁体ハイブリッドに着想を得た1次元電子ナノデバイスを提案する。
FMI層長をオレンジ色または/またはグローバルバックゲート電圧を印加することにより、スピン及びフェルミオンパリティ変化QPTを調整可能であることを示す。
以上の結果から,これらの効果は実験的に利用可能であり,ハイブリッドナノワイヤにおける量子相転移の研究のための堅牢なプラットフォームを提供する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-18T22:25:50Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
コンデンサ型S-QD-S接合の自己整合量子化を経路積分定式化により検討する。
結果は、任意のインピーダンス環境においてS-QD-S接合を取り入れた将来の実験と量子デバイスを理解するために重要である。
論文 参考訳(メタデータ) (2024-02-15T21:14:59Z) - Quantized conductance in split gate superconducting quantum point
contacts with InGaAs semiconducting two-dimensional electron systems [0.6179194184465651]
量子点接触(quantum point contact)またはQPC(quantum point contact)は、量子化コンダクタンスを持つ半導体2次元(2次元)電子系の収縮であり、新しいスピントロニクスおよびトポロジカル電子回路の構成要素である。
半導体2次元電子系における分割ゲート技術を用いたナノスケールSQPCアレイの革新的実現について報告する。
論文 参考訳(メタデータ) (2023-12-18T14:45:15Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
長距離および異方性相互作用は、量子力学的多体系における豊富な空間構造を促進する。
我々は,光学格子における長距離双極子相互作用を用いて,新しい相関量子相を実現できることを示す。
この研究は、長距離および異方性相互作用を持つ幅広い格子モデルの量子シミュレーションへの扉を開く。
論文 参考訳(メタデータ) (2023-06-01T16:49:20Z) - High-fidelity two-qubit gates of hybrid superconducting-semiconducting
singlet-triplet qubits [0.0]
超伝導体は量子ドットの自由度の間の長距離相互作用を誘導する。
この異方性は可変であり、シングルトリップ(ST)スピンキュービット間の高速かつ高忠実な2ビットゲートを可能にする。
我々の設計は、量子情報の非計算状態へのリークに無害である。
論文 参考訳(メタデータ) (2023-04-11T09:30:38Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
マイクロ波領域の超伝導回路は 未だにそのような装置を欠いている
共振導波路に結合した8量子ビットからなる超伝導メタマテリアルにおいて、電磁波の減速を実証した。
本研究は, 超伝導回路の高柔軟性を実証し, カスタムバンド構造を実現することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T20:55:10Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
材料革新とデザインのブレークスルーは、過去20年間に大幅に量子ビットの機能とコヒーレンスを高めてきた。
半導体としてのInAsと超伝導体としてのAlとの界面を改良することにより、電圧制御されたジョセフソン接合電界効果トランジスタ(JJ-FET)を確実に製造できることを示す。
JJ-FETで作製した量子2レベル系における1および2光子吸収の非調和性と結合強度について述べる。
論文 参考訳(メタデータ) (2021-03-26T19:09:59Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
マクロレベルの量子力学的効果は、1980年代にジョセフソン接合型超伝導回路で初めて研究された。
過去20年間で、量子情報科学の出現は、これらの回路を量子情報プロセッサの量子ビットとして利用するための研究を強化してきた。
量子電磁力学(QED)の分野は、今では独立して繁栄する研究分野となっている。
論文 参考訳(メタデータ) (2020-05-26T12:47:38Z) - A Phononic Bus for Coherent Interfaces Between a Superconducting Quantum
Processor, Spin Memory, and Photonic Quantum Networks [0.0]
本研究では,超伝導マイクロ波量子ビットと固体人工原子の基底状態スピン系との間の高忠実な量子状態伝達法を提案する。
超伝導回路量子コンピューティングと人工原子の相補的な強度を組み合わせることで、ハイブリッドアーキテクチャは、長寿命量子メモリ、高忠実度測定、大きな量子ビット数、再構成可能な量子ビット接続、光量子ネットワークによる高忠実度状態とゲートテレポーテーションを備えた高忠実度量子ビットゲートを提供する。
論文 参考訳(メタデータ) (2020-03-18T17:57:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。