Hybrid superconductor-semiconductor systems for quantum technology
- URL: http://arxiv.org/abs/2005.00030v1
- Date: Thu, 30 Apr 2020 18:03:16 GMT
- Title: Hybrid superconductor-semiconductor systems for quantum technology
- Authors: M\'onica Benito and Guido Burkard
- Abstract summary: Superconducting quantum devices provide excellent connectivity and controllability.
semiconductor spin qubits stand out with their long-lasting quantum coherence, fast control, and potential for miniaturization and scaling.
Recent progress has been made in combining superconducting circuits and semiconducting devices into hybrid quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting quantum devices provide excellent connectivity and
controllability while semiconductor spin qubits stand out with their
long-lasting quantum coherence, fast control, and potential for miniaturization
and scaling. In the last few years, remarkable progress has been made in
combining superconducting circuits and semiconducting devices into hybrid
quantum systems that benefit from the physical properties of both constituents.
Superconducting cavities can mediate quantum-coherent coupling over long
distances between electronic degrees of freedom such as the spin of individual
electrons on a semiconductor chip and thus provide essential connectivity for a
quantum device. Electron spins in semiconductor quantum dots have reached very
long coherence times and allow for fast quantum gate operations with increasing
fidelities. We summarize recent progress and theoretical models that describe
superconducting-semiconducting hybrid quantum systems, explain the limitations
of these systems, and describe different directions where future experiments
and theory are headed.
Related papers
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Quantum dynamics of superconductor-quantum dot-superconductor Josephson
junctions [0.0]
We study the self-consistent quantization of a capacitively-shunted S-QD-S junction via path-integral formulation.
Results are important to understand future experiments and quantum devices incorporating S-QD-S junctions in arbitrary impedance environments.
arXiv Detail & Related papers (2024-02-15T21:14:59Z) - Quantized conductance in split gate superconducting quantum point
contacts with InGaAs semiconducting two-dimensional electron systems [0.6179194184465651]
Quantum point contact or QPC -- a constriction in a semiconducting two-dimensional (2D) electron system with a quantized conductance -- has been found as the building block of novel spintronic, and topological electronic circuits.
We report on an innovative realisation of nanoscale SQPC arrays with split gate technology in semiconducting 2D electron systems.
arXiv Detail & Related papers (2023-12-18T14:45:15Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - High-fidelity two-qubit gates of hybrid superconducting-semiconducting
singlet-triplet qubits [0.0]
Superconductors induce long-range interactions between the spin degrees of freedom of quantum dots.
We show that this anisotropy is tunable and enables fast and high-fidelity two-qubit gates between singlet-triplet (ST) spin qubits.
Our design is immune to leakage of the quantum information into noncomputational states.
arXiv Detail & Related papers (2023-04-11T09:30:38Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - A Phononic Bus for Coherent Interfaces Between a Superconducting Quantum
Processor, Spin Memory, and Photonic Quantum Networks [0.0]
We introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom.
By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.
arXiv Detail & Related papers (2020-03-18T17:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.