Analytically projected rotationally symmetric explicitly correlated
Gaussian Functions with one-axis-shifted centers
- URL: http://arxiv.org/abs/2005.00092v2
- Date: Fri, 31 Jul 2020 18:15:05 GMT
- Title: Analytically projected rotationally symmetric explicitly correlated
Gaussian Functions with one-axis-shifted centers
- Authors: Andrea Muolo and Markus Reiher
- Abstract summary: A new functional form is presented for expanding the wave function of an N-particle system with arbitrary angular momentum and parity.
We show how the new formalism can be used as a unified framework for high-accuracy calculations of properties of small atoms and molecules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new explicitly correlated functional form for expanding the wave function
of an N-particle system with arbitrary angular momentum and parity is
presented. We develop the projection-based approach, numerically exploited in
our previous work [J. Chem. Phys. 149, 184105 (2018)], to explicitly correlated
Gausssians with one-axis shifted centers and derive the matrix elements for the
Hamiltonian and the angular momentum operators by analytically solving the
integral projection operator. Variational few-body calculations without
assuming the Born-Oppenheimer approximation are presented for several
rotationally excited states of three- and four-particle systems. We show how
the new formalism can be used as a unified framework for high-accuracy
calculations of properties of small atoms and molecules.
Related papers
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - On Hagedorn wavepackets associated with different Gaussians [0.0]
Wavepackets formed by superpositions of Hagedorn functions have been successfully used to solve the Schr"odinger equation.
For evaluating typical observables, such as position or kinetic energy, it is sufficient to consider orthonormal Hagedorn functions with a single Gaussian center.
arXiv Detail & Related papers (2024-05-13T16:15:08Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Spontaneously interacting qubits from Gauss-Bonnet [1.433758865948252]
We show that KAQ critical metrics exist for loss functionals that include the Gauss-Bonnet term.
We find that exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain the familiar distributions for random Hamiltonians.
arXiv Detail & Related papers (2023-10-02T18:45:12Z) - Generating function for projected entangled-pair states [0.1759252234439348]
We extend the generating function approach for tensor network diagrammatic summation.
Taking the form of a one-particle excitation, we show that the excited state can be computed efficiently in the generating function formalism.
We conclude with a discussion on generalizations to multi-particle excitations.
arXiv Detail & Related papers (2023-07-16T15:49:37Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - A complex Gaussian approach to molecular photoionization [0.0]
We develop and implement a Gaussian approach to calculate partial cross-sections and asymmetry parameters for molecular photoionization.
We show that all the necessary transition integrals become analytical, in both length and velocity gauges, thus facilitating the numerical evaluation of photoionization observables.
Illustrative results, presented for NH3 and H2O within a one-active-electron monocentric model, validate the proposed strategy.
arXiv Detail & Related papers (2021-11-16T17:26:04Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.