論文の概要: A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning
- arxiv url: http://arxiv.org/abs/2005.00095v2
- Date: Mon, 4 May 2020 15:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 05:50:26.563356
- Title: A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning
- Title(参考訳): 深層学習による癌薬剤感受性予測の体系化の試み
- Authors: Austin Clyde, Tom Brettin, Alexander Partin, Maulik Shaulik, Hyunseung
Yoo, Yvonne Evrard, Yitan Zhu, Fangfang Xia, Rick Stevens
- Abstract要約: 35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
- 参考スコア(独自算出の注目度): 49.86828302591469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By combining various cancer cell line (CCL) drug screening panels, the size
of the data has grown significantly to begin understanding how advances in deep
learning can advance drug response predictions. In this paper we train >35,000
neural network models, sweeping over common featurization techniques. We found
the RNA-seq to be highly redundant and informative even with subsets larger
than 128 features. We found the inclusion of single nucleotide polymorphisms
(SNPs) coded as count matrices improved model performance significantly, and no
substantial difference in model performance with respect to molecular
featurization between the common open source MOrdred descriptors and Dragon7
descriptors. Alongside this analysis, we outline data integration between CCL
screening datasets and present evidence that new metrics and imbalanced data
techniques, as well as advances in data standardization, need to be developed.
- Abstract(参考訳): 様々ながん細胞株(CCL)の薬物スクリーニングパネルを組み合わせることで、データのサイズが大きく増加し、ディープラーニングの進歩が薬物反応予測をどう進めるかを理解するようになった。
本稿では,35,000以上のニューラルネットワークモデルをトレーニングし,一般的な成果化手法を網羅する。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
数行列として符号化された単一ヌクレオチド多型 (SNP) はモデル性能を著しく向上させ, 共通オープンソースMOrdred記述子とDragon7記述子との分子的分解に関して, モデル性能に有意な差は認められなかった。
この分析の他に、CCLスクリーニングデータセット間のデータ統合の概要と、新しいメトリクスと不均衡なデータ技術、およびデータ標準化の進歩が必要であることを示す。
関連論文リスト
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
変異原性は、様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
本研究では,新しいアンサンブルに基づく変異原性予測モデルを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:14:21Z) - An Autoencoder and Generative Adversarial Networks Approach for Multi-Omics Data Imbalanced Class Handling and Classification [2.2940141855172036]
分子生物学では、マルチオミクスシークエンシングから生成されるデータの爆発があった。
従来の統計手法は、そのような高次元データを扱う際に難しい課題に直面している。
この研究は、オートエンコーダを組み込んだニューラルネットワークでこれらの課題に取り組むことに焦点を当て、特徴の潜在空間を抽出する。
論文 参考訳(メタデータ) (2024-05-16T01:45:55Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
我々は, 結合親和性, 溶解性, ADMET (吸収, 分布, 代謝, 排出, 毒性) を含む幅広い特性について検討する。
化学指紋やグラフベースニューラルネットワークなど,既存の一般的な記述子や埋め込みについて論じる。
最後に、モデル予測の理解を提供する技術、特に薬物発見における重要な意思決定について評価する。
論文 参考訳(メタデータ) (2023-08-02T22:18:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer
Data [4.843654097048771]
SSL(Self-Supervised Learning)メソッドは、通常はラベル付きデータを扱うために使用される。
我々は、SSLコンポーネントからなる新しい事前学習パラダイムを開発する。
本手法はTGAパン癌データセットの癌型分類における最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-10-03T11:20:12Z) - Cancer Subtyping by Improved Transcriptomic Features Using Vector
Quantized Variational Autoencoder [10.835673227875615]
本稿では,Vector Quantized Variational AutoEncoder (VQ-VAE)を提案する。
VQ-VAEは厳密な仮定を課さないため、その潜在機能は入力のより良い表現であり、メインストリームのクラスタリング手法で優れたクラスタリング性能を得ることができる。
論文 参考訳(メタデータ) (2022-07-20T09:47:53Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。