論文の概要: Machine Learning Small Molecule Properties in Drug Discovery
- arxiv url: http://arxiv.org/abs/2308.12354v1
- Date: Wed, 2 Aug 2023 22:18:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-27 04:38:37.338944
- Title: Machine Learning Small Molecule Properties in Drug Discovery
- Title(参考訳): 薬物発見における微小分子特性の機械学習
- Authors: Nikolai Schapin, Maciej Majewski, Alejandro Varela, Carlos Arroniz,
Gianni De Fabritiis
- Abstract要約: 我々は, 結合親和性, 溶解性, ADMET (吸収, 分布, 代謝, 排出, 毒性) を含む幅広い特性について検討する。
化学指紋やグラフベースニューラルネットワークなど,既存の一般的な記述子や埋め込みについて論じる。
最後に、モデル予測の理解を提供する技術、特に薬物発見における重要な意思決定について評価する。
- 参考スコア(独自算出の注目度): 44.62264781248437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) is a promising approach for predicting small molecule
properties in drug discovery. Here, we provide a comprehensive overview of
various ML methods introduced for this purpose in recent years. We review a
wide range of properties, including binding affinities, solubility, and ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity). We discuss
existing popular datasets and molecular descriptors and embeddings, such as
chemical fingerprints and graph-based neural networks. We highlight also
challenges of predicting and optimizing multiple properties during hit-to-lead
and lead optimization stages of drug discovery and explore briefly possible
multi-objective optimization techniques that can be used to balance diverse
properties while optimizing lead candidates. Finally, techniques to provide an
understanding of model predictions, especially for critical decision-making in
drug discovery are assessed. Overall, this review provides insights into the
landscape of ML models for small molecule property predictions in drug
discovery. So far, there are multiple diverse approaches, but their
performances are often comparable. Neural networks, while more flexible, do not
always outperform simpler models. This shows that the availability of
high-quality training data remains crucial for training accurate models and
there is a need for standardized benchmarks, additional performance metrics,
and best practices to enable richer comparisons between the different
techniques and models that can shed a better light on the differences between
the many techniques.
- Abstract(参考訳): 機械学習(ML)は、薬物発見における小さな分子特性を予測するための有望なアプローチである。
本稿では,近年,この目的のために導入された各種ML手法について概観する。
本稿では, 結合親和性, 溶解性, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) など, 幅広い特性について検討する。
既存の一般的なデータセットや分子ディスクリプタ、化学指紋やグラフベースのニューラルネットワークなどの埋め込みについて論じる。
我々はまた,薬剤発見のヒット・トゥ・リードおよびリード最適化段階における複数の特性の予測と最適化の課題を浮き彫りにして,リード候補を最適化しながら多様な特性のバランスをとるために使用できる多目的最適化手法について概説する。
最後に,モデル予測の理解,特に創薬における重要な意思決定のための技術を評価する。
概して、このレビューは、薬物発見における小さな分子特性予測のためのMLモデルのランドスケープに関する洞察を提供する。
これまでのところ、さまざまなアプローチがありますが、そのパフォーマンスはしばしば同等です。
ニューラルネットワークはより柔軟だが、必ずしも単純なモデルを上回るものではない。
これは、精度の高いモデルのトレーニングには、高品質なトレーニングデータの可用性が依然として不可欠であり、標準化されたベンチマーク、追加のパフォーマンスメトリクス、さまざまなテクニックとモデルのよりリッチな比較を可能にするためのベストプラクティスが必要であることを示している。
関連論文リスト
- Pretraining Graph Transformers with Atom-in-a-Molecule Quantum Properties for Improved ADMET Modeling [38.53065398127086]
我々は,グラフトランスフォーマーの事前学習が原子レベルの量子力学特性に与える影響を評価する。
原子量子力学的性質に基づいて事前訓練されたモデルは、より低周波ラプラシアン固有モードを捕捉する。
論文 参考訳(メタデータ) (2024-10-10T15:20:30Z) - Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage
VAE [1.3597551064547502]
変異オートエンコーダ(VAE)は医薬品発見の一般的な方法であり、その性能を改善するために様々なアーキテクチャやパイプラインが提案されている。
VAEアプローチは、データが高次元の周囲空間に埋め込まれた低次元多様体上にあるとき、多様体の回復不良に悩まされることが知られている。
本稿では, 合成データセット上での多様体回復を向上する多段階VAEアプローチを創薬分野に適用することを検討する。
論文 参考訳(メタデータ) (2023-08-24T20:22:22Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Accurate, reliable and interpretable solubility prediction of druglike
molecules with attention pooling and Bayesian learning [1.8275108630751844]
可溶性のシリコ予測は, 仮想スクリーニングと鉛最適化において有用性について研究されている。
近年,物理に基づく手法は高スループットタスクには適さないため,実験データを用いた機械学習(ML)手法が普及している。
本稿では,グラフニューラルネットワーク(GNN)を自己注意型読み出し層で開発し,予測性能を向上させる。
論文 参考訳(メタデータ) (2022-09-29T07:48:10Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - Predicting drug properties with parameter-free machine learning:
Pareto-Optimal Embedded Modeling (POEM) [0.13854111346209866]
POEMは、最適化を必要とせず、信頼性の高い予測モデルを生成するために開発された非パラメトリックな教師付きMLアルゴリズムである。
我々は、業界標準のMLアルゴリズムと比較してPOEMをベンチマークし、17の分類タスクにまたがって結果を公表する。
論文 参考訳(メタデータ) (2020-02-11T17:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。